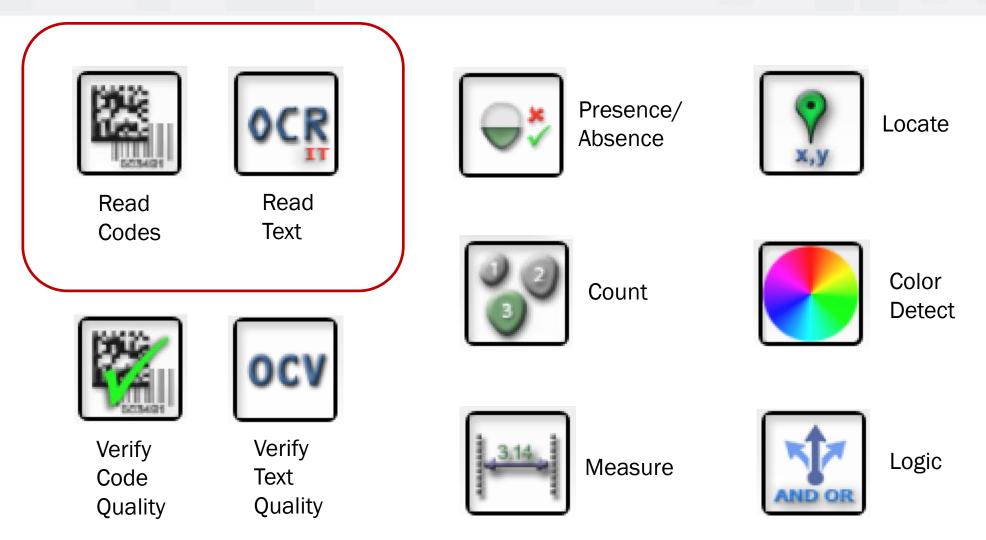
OMRON MICROSCAN.

Ensure 100% Traceability and Quality of Your Products using Omron Microscan Automatic Identification and Machine Vision Systems

Presenter: Steven J. King – Machine Vision Product Manager


Date: Oct 26, 2017

Agenda

- Automatic Identification and Machine Vision Tool Set
- Traceability
 - Automatic ID Code Types
 - Code Marking Methods
 - Code Reading
 - Code Verification
- Machine Vision Inspection
 - Presence/Absence
 - Color ID/Color Match
 - Count
 - Measurement/Gauging
 - Assembly and Assembly Verification
 - Defect Detection

AutoID and Machine Vision Basic Toolset

Traceability

Blade Runner Trivia – Who made the Replicant snakes?

Strategy

- Mark all parts with codes
- Enables automation
- Build a complete manifest of what goes into a product
- Track from cradle to grave

Requirements

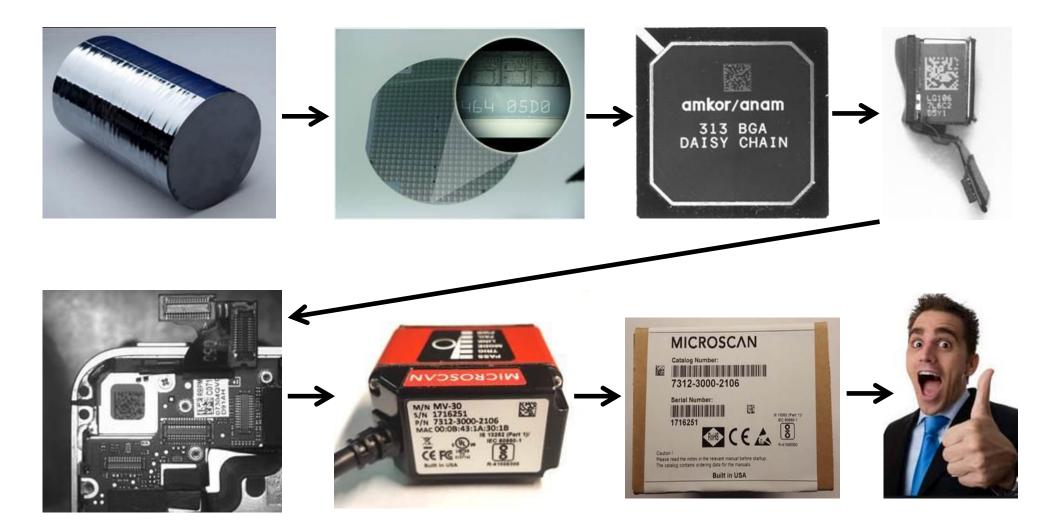
- Marking
- Mark quality verification
- Reading
- Data recording

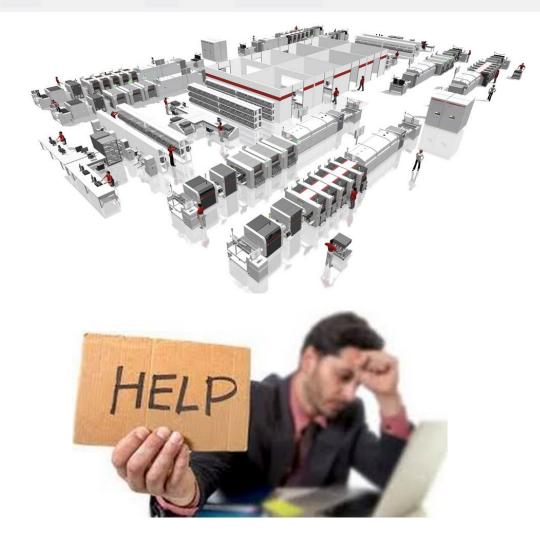
Abdul Ben Hassan

Human Readable Codes

OCR-A OCR-B SEMI-OCR 112345.5.6781

• 2D Symbologies



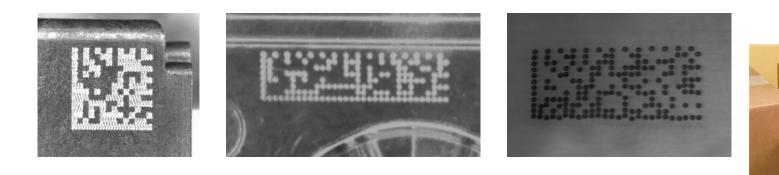


Traceability

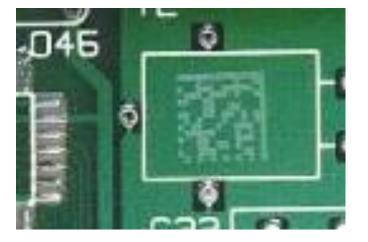
Traceability

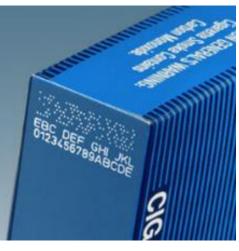
- Track
 - In house
 - Part tracking
 - Process control
 - Process optimization
- Trace
 - Part Genealogy
 - Defective Part Tracking
 - Spill Containment
 - Selective Recalls
 - Anti Diversion
 - Counterfeit Prevention
 - Nabbing replicants

Code Marking Methods


Labels – Ink Jet, Laser, Thermal

Direct Part Marks – Laser, Dot Peen, Ink Jet




Direct Part Mark Application Examples

Automotive Applications

- Engine component traceability
 - Head and block traceability
 - Assembly error proofing •
 - Selective pairing of components
- Transmission components traceability
- Fuel injector traceability
- Catalytic converter traceability
- PCB traceability
- Final assembly and WIP verification

Code Readers

- Handheld label reader HS 21
- Handheld DPM (Direct Part Mark) reader Mobile Hawk
- Fixed mount label and DPM reader MicroHAWK ID20, ID30, ID40
- Fixed mount vision system with reading MicroHAWK MV, HAWK MV

MicroHAWK ID Reader MicroHAWK/HAWK MV

HS-21

Mobile Hawk

AutoID and Machine Vision Basic Toolset

Read Text

Presence/ Absence

Locate

Count

Color Detect

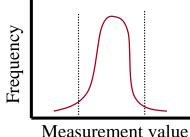
Code

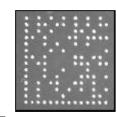
Quality

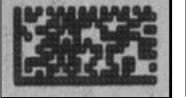
OCV Verify

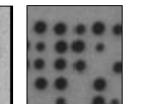
Verify Text Quality

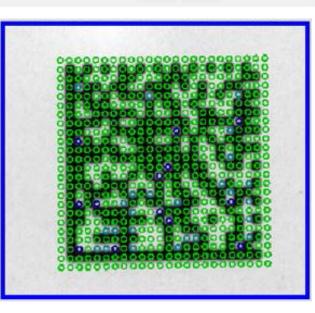
Measure

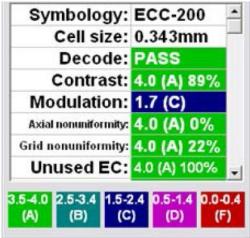


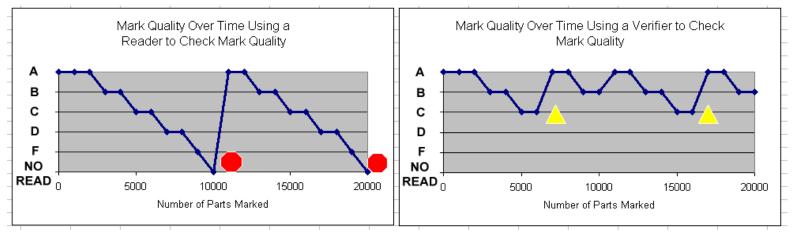

Logic




Code Verification – Check the handwriting


- Marking processes drift from nominal settings ultimately leading to unreadable marks
- Verification allows adjusting of marking process <u>before</u> unreadable marks are made
- Verification is metrology tool to ensure consistent mark quality
- Verifier can tell not only that mark is readable but also how close it is to edge of readability that it is

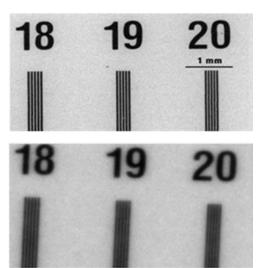




Code Verification

- <u>Offline</u> or <u>Inline</u> symbol verification
 - Verify or validate the symbol immediately after printing
 - Deviate from the standards if process or circumstances require
 - Provide results that correlate directly with ISO standards
- Verification ensures that EVERY product ships with a good quality symbol despite the fact that every marking system will degrade over time

Without verification, some "bad" parts escape into the process


With verification, we <u>prevent</u> bad marks from ever being made.

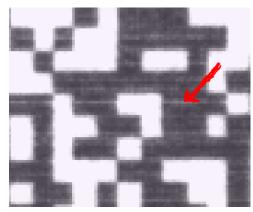
ISO15416 - 1D Label Verification

ISO 15416

- 1D on Labels
- Requires even illumination
- Requires good lens with high MTF

D	Reported Gra	de: 3.3/3.2	pixels/640/	/90								
В		>> Grade:	3.3 / Apert	ure: 3.2 pixe	els / WaveLe	ength: 640 /	LightAngle	: 90				
(3.3)	Deco	de: 061414	41999996									
Good	Bar Wid	Ith: 6.4 pix	els									
Parameter Grades:												
		1	2	3	4	5	6	7	8	9	10	
Edge De	etermination	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	
	Decode	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	
Sym	bol Contrast	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	
		80%	79%	79%	78 %	83%	81%	80%	81%	80%	81%	
Min	Reflectance	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	
		(12-92)%	(12-91)%	(12-91) %	(12-90)%	(11-94)%	(11-92)%	(11-91)%	(11-92)%	(11-91)%	(11-92)%	
Min Ec	dge Contrast	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	
		58%	58%	57%	56%	56%	58%	58%	55%	58%	58%	
	Modulation	A(4)	A(4)	A(4)	A(4)	B(3)	A(4)	A(4)	B(3)	A(4)	A(4)	
		73%	74%	72%	71%	68%	72%	72%	67%	72%	72%	
	Defects	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	B(3)	A(4)	A(4)	A(4)	
		7	9	13	8	10	8	16	12	8	7	
	Decodability	A(4)	B(3)	A(4)	A(4)	B(3)	B(3)	A(4)	A(4)	B(3)	B(3)	
		63%	61%	62%	64%	58%	59%	66%	64%	58%	61%	
	QuietZone	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	A(4)	
		(8.9-8.9)	(8.9-8.9)	(8.9-8.9)	(8.9-8.9)	(8.9-8.9)	(8.9-8.9)	(8.9-8.9)	(8.9-8.9)	(8.9-8.9)	(8.9-8.9)	
	Final	A(4)	B(3)	A(4)	A(4)	B(3)	B(3)	B(3)	B(3)	B(3)	B(3)	

ISO15415 - 2D Label Verification

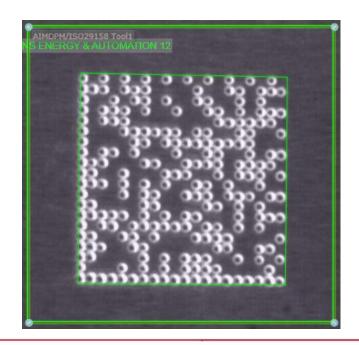


GTIN:4008654123454 EXP: 07 / 2015 LOT: 802051R97A32 SN: 25369255567

ISO 15415

- 2D on Labels
- Requires even illumination
- Requires good lens with high MTF

Modulation

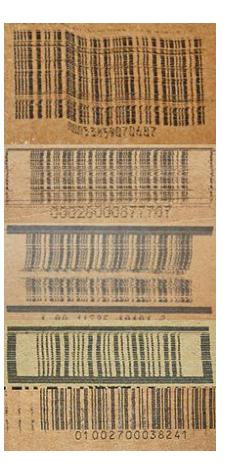


VISO15415 Tool1 : Verification Report										
D	Reported Grade:		3.0/4.0 pixels/640/90							
B	>>	Grad	le: 3.0 / Ap	perture	e: 4.0 pixels / WaveLength: 6	40 / LightAngle: 90				
Good	Decode:	0104	00865412	34541	7150700108QZ051R97A322	2125369255567				
Good	Cell Size:	7.8 p	oixels							
Param	eter Grades:	irade	Score Units	חה	Calibration Data:					
	Symbol Contrast				State:	Not Calibrated				
	Modulation				Target Symbol 1 Width:	0.24				
Reflectance Margin		В			Target Symbol 2 Width:	0.48				
Fixed Pattern Dmg		Α			Maximum Exposure:	32000				
Axi	Axial NonUniformity		0 %		Target Rmin:	4				
Gr	Grid NonUniformity		14 %		Target Rmax:	82				
Unus	sed Err Correction	A	100 %							
					C	Options Save				

ISO 29158 - 2D DPM Verification

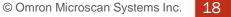
ISO 29158

- Direct Part Marks
- More forgiving spec
- Requires application specific lighting


NIA 🙀	MDPM/ISO29158 Too	l1 : Ve	rification R	eport		- 0 X					
	Reported Grade:	DPM4	1.0/8.1 pixel	s/640	0/90						
A	A >>>		Grade: DPM4.0 / Aperture: 8.1 pixels / WaveLength: 640 / LightAngle: 90								
Cor	Decode:		SIEMENS ENERGY & AUTOMATION 12								
900	Good Cell Size:		10.1 pixels								
Pa	arameter Grades:	Grade	Score Units		Calibration Data:						
	Cell Contra	st A	42 %		State:	Not Calibrated					
	Cell Modulatio				Target Symbol 1 Width:	0.24					
	Reflectance Marg				Target Symbol 2 Width:	0.48					
	Minimum Reflectance		100		Maximum Exposure:	32000					
	Fixed Pattern Dm				Target Rmin:	4					
	Axial NonUniformi		1 %		Target Rmax:	82					
	Grid NonUniformi	y A	13 %								
	Unused Err Correctio	n A	100 %								
						Options Save					

Verification Example: Inkjet on cartons

- Direct inkjet printing is economical
- But the results are not always pretty
- No reads at big retail customers result in fines for each unreadable code



Inline verification after printing ensures NO bad symbols ship

Code Verifiers

Offline

- Handheld label and DPM verifier LVS-9580, LVS 9585
- Desktop Verifier LVS-9510
- Inline
 - Fixed mount inline verifier MicroHAWK MV, HAWK MV-4000

Code Verification at the printing source

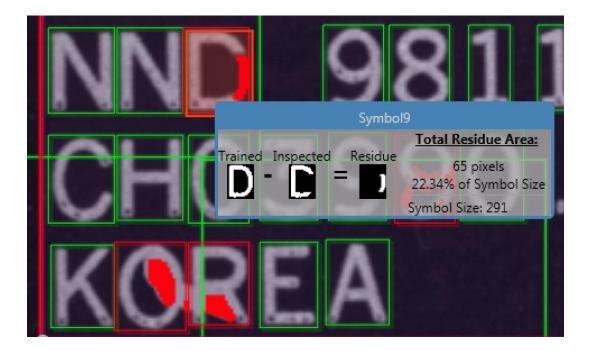
Optical Character Verification

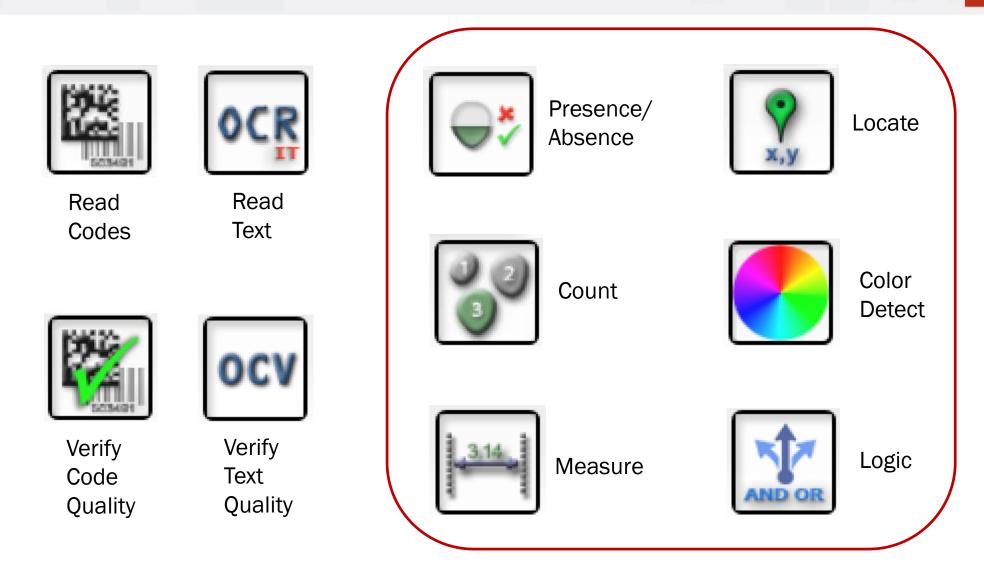
- Show and Go Tool Validate printed text by training on a good sample
- Detects common printing problems and provides pass/fail output

Symbols are compared against trained golden symbol

		ction	Defect Detect
Residue Example Trained Symbol Inspected Symbol Residue Defects Based on Tolerance 6 - - - - - - - - Percentage Image: Blob 10 - <td< th=""><th>Total Residue Area 15</th><th>Residue Example Inspected</th><th>Trained Symbol</th></td<>	Total Residue Area 15	Residue Example Inspected	Trained Symbol

- Symbols are rejected if the total residue exceeds the set tolerance
- Optional tests for Largest single defect, character breaks, contrast, and blurriness


Optical Character Verification - Example



Pad Printing OCV on ICs

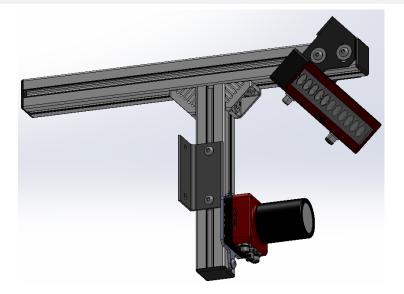
AutoID and Machine Vision Basic Toolset

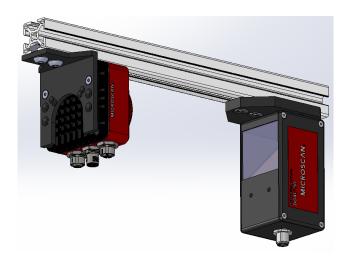
Full Machine Vision Smart Cameras – MicroHAWK MV

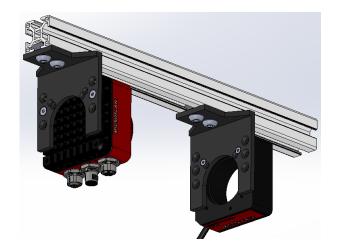
Brand New High Performance Camera

HAWK MV-4000

8 Models

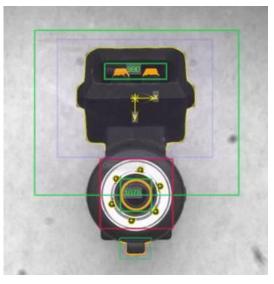

- MV-4000-03, Mono, 0.3 MP
- MV-4000-03C, Color, 0.3 MP
- MV-4000-13, Mono, 1.3 MP
- MV-4000-13C, Color, 1.3 MP
- MV-4000-20, Mono, 2.0 MP
- MV-4000-20C, Color, 2.0 MP
- MV-4000-50, Mono, 5.0 MP
- MV-4000-50c, Color, 5.0 MP

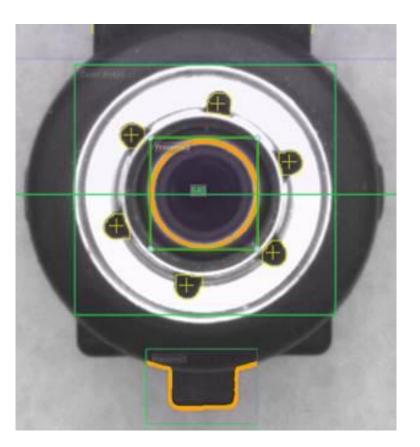




HAWK MV-4000 Light Kits

Light Kits	
98-9000120-01	Kit, bracket, MAX 300 to HAWK MV-4000
98-9000121-01	Kit, bracket, DOAL to HAWK MV-4000
98-9000122-01	Kit, bracket, Ring 60/70 to HAWK MV-4000
98-9000123-01	Kit, bracket, Ring 100 to HAWK MV-4000
98-9000137-01	Kit, Smart Series, Pharmalite, HAWK MV-4000




Presence/Absence of Critical Parts and Features

Count Pixels

- Within range of grayscale intensity
- Edge pixels (brightness invariant)
- Tolerance
 - Compare count to min and max values
- Output
 - Pixel count
 - Pass/Fail

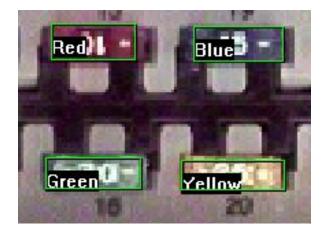
Presence/Absence using Color

Color ID

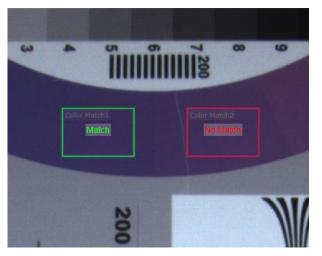
 Determine color from library of colors

Color Check

Compare color to one specific color


Tolerance

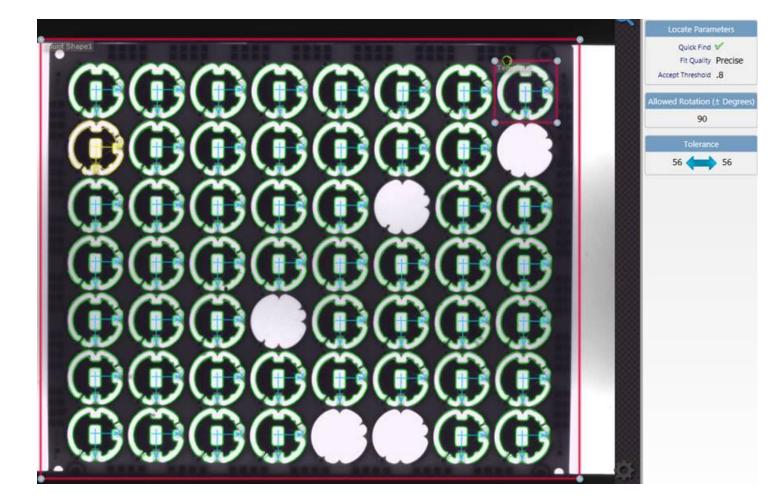
 Compare pixel count to min values


Output

- Color
- Count of pixels
- Pass/Fail

Count

Locate features


• Shape based

Tolerance

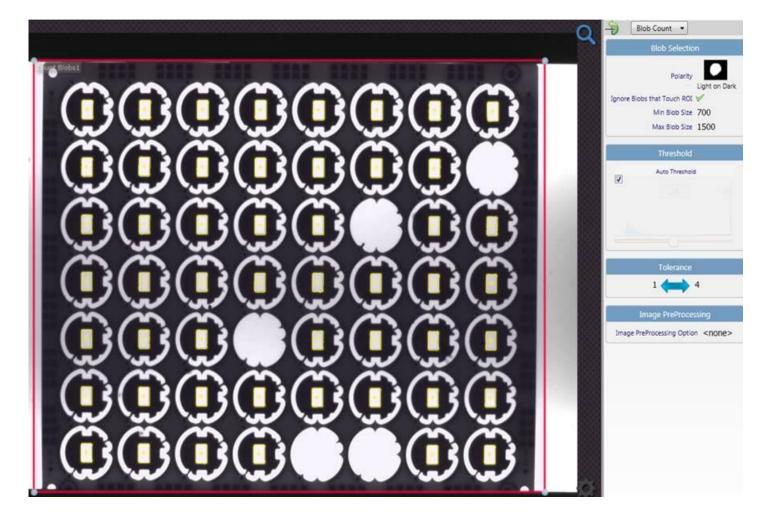
 Compare count to min and max allowed values

Output

- Count
- Locations

Count

Locate features

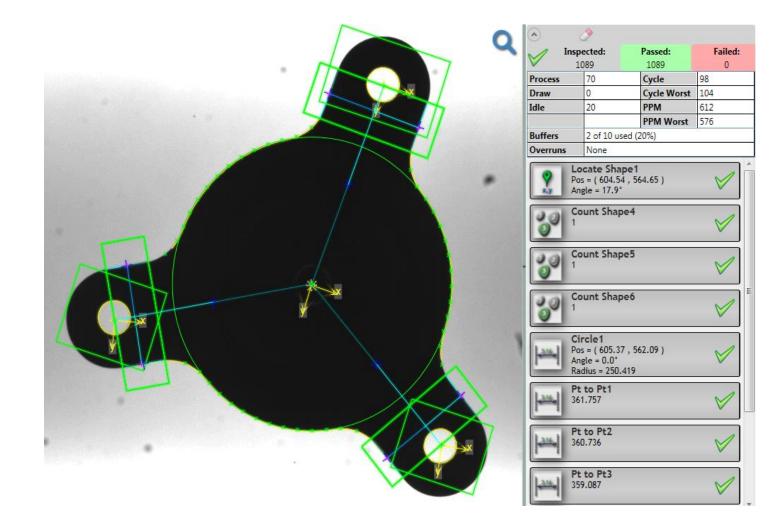

- Blob based
- Select based on min and max size of blob

Tolerance

 Compare count to min and max values

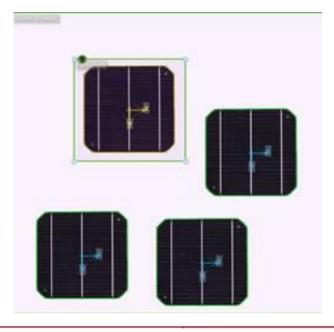
Output

- Count
- Locations

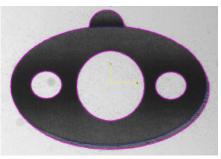

Measurement

Locate features

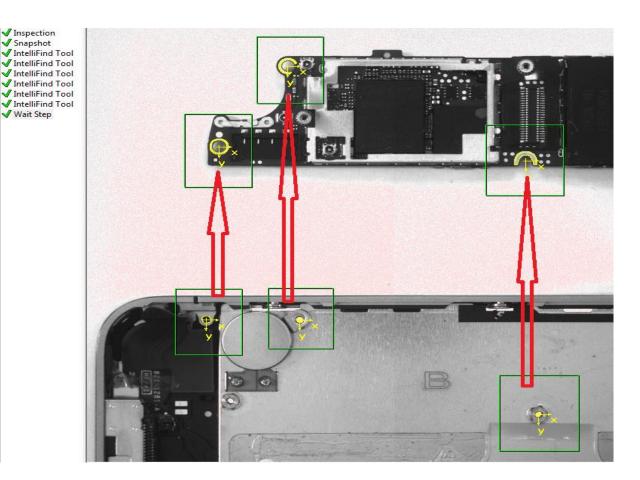
- Lines
- Points
- Circles
- Patterns


Measure

- Line to Line
- Point to Point
- Point to Line
- Calibration
 - Convert pixels to real world units
- Tolerance
 - Compare to min and max values
- Output OK/NG


Location and Guidance

- Train a pattern
- Return X, Y, Theta
- Add encoder based offset for "pickup down the belt"



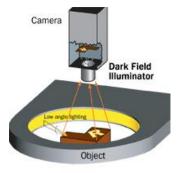
- Intellifind Tool
 - Edge Based Pattern Matching
 - Allows 360 degree rotation
 - Allows scale changes
 - Lighting invariant
 - Finds patterns amongst clutter

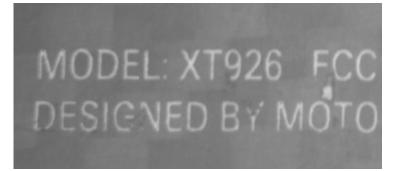
Assembly

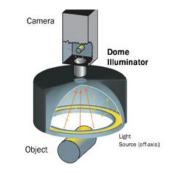
- Train pattern of points on each part
- Compute offset of part 1 to blueprint
- Compute offset of part 2 to blueprint
- Compute offset part 1 to part 2
- Output X, Y, Theta to assemble part 1 onto part two
- Uses "rigid body fit" algorithm

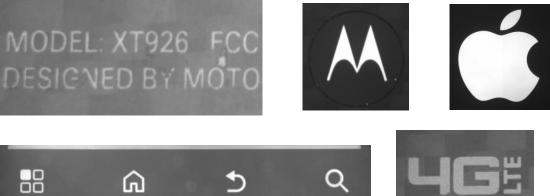
Defect Detection

- Often difficult Defects similar in size and shape to allowed features
- Highly dependent on lighting to create contrast


Defect Detection – Lighting Dependency




Camera DOAL Illuminator Light Spitter Diffuser Object



Defect Detection – Using OCV

- OCV is not just for characters
- OCV can be used for individual shapes or symbols
- OCV computes difference between trained and inspected shape
- OCV combined with color checks is very powerful

Wrap Up

Modern Machine Vision Systems contain tools for

- Automatic Code Identification
- Code Verification
- Machine Vision

Traceability is a Strategy that involves

- Picking the correct code types
- Picking the correct code marking methods
- Code Reading
- Code Verification

Traditional Machine Vision is used for

- Presence/Absence
- Color ID/Color Match
- Count
- Measurement/Gauging
- Assembly and Assembly Verification
- Defect Detection

Last Trivia Question

What is a Machine Vision Engineer's favorite quote from Blade Runner?

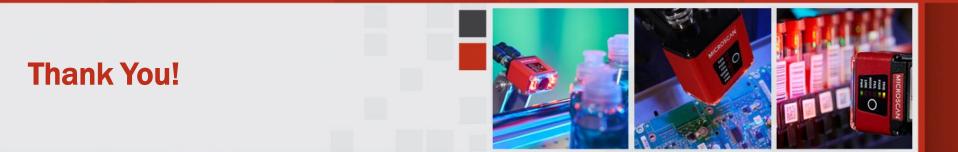
HAWK MV-4000 Coming in Dec 2017!

I just do eyes!

For more information... visit booth number

MICROSCAN.

www.microscan.com


Manuals, Software, Drivers, Technical Publications, Knowledge Base

MicroscanCommunity

Blogs, Videos, Photos

helpdesk@microscan.com Technical support

MICROSCAN.

Any Questions? Contact: Steven J. King sking@microscan.com www.microscan.com

© Microscan Systems Inc.