Microscan MicroHAWK Reader Interface

Contents
Copyright	2
Agreement	2
Change History	2
Introduction	3
Microscan SDK.NET Reference	3
SDK Objects	3
Connector	3
DeviceDiscovery	3
ReaderDevice	4
ReportConnection	5
Reader Cycle Report	5
Reader CommandConnection	8
Threads	9
Microscan SDK.NET Example	9
Installation	10
Appendix A - Microscan WebLink REST API Reference	15
File Service	15
Image Service	15
Appendix B – WebSockets interface for K-Commands communication	17
WebSockets communication - Overview	17
WebSockets with MicroHAWK ID readers	17
WebSockets Example – Step by Step	17
Getting started	17
Open a WebSockets Connection	19
Defining event handlers	19
Receive data from the reader	20
Send data to the reader	20
Closing a WebSockets Connection	20
Complete source code	21
Receiving cycle report results via WebSockets	22

[bookmark: _Toc479836704]Copyright
© Microscan Systems, Inc. 2016 - 2017. All rights reserved.
This document and its content remains the property of Microscan Systems, Inc. In no way may any part of it be reproduced, transmitted or stored in any retrieval system without prior written consent, unless expressly permitted in any written contract signed by the recipient and Microscan. No part may be disclosed to or used by any third party unless expressly permitted by a relevant written agreement. If no such agreement has been signed by the recipient (or their company) with Microscan, the document and its content shall remain confidential.
[bookmark: _Toc479836705]Agreement
This document will form the basis for agreement between the Customer and Microscan. The Customer should not make any assumptions or interpretations on included functionality if they are not specifically referred to within the document.
It is recommended that clarification from Microscan should be sought on any point that the customer is unsure, as the final functionality produced will be as per the signed off specification. Any additions or changes thereafter will be subject to a separate specification and quote.
Unless specifically stated, every effort will be made to ensure that all screen / report designs shown within the document are accurately represented by the software finally delivered. Microscan however reserves the right to make alterations where appropriate during the software development stage. Microscan will notify the client of any such alterations and make clear the reasons why. Changes made to screen / report layouts during development will not compromise previously agreed software functionality unless deemed necessary and approval has been received from the client.
This document will not be accepted, and no work will be undertaken by Microscan unless it is either signed by the nominated Customer representative or e-mail approval has been received.
[bookmark: _Toc479836706]Change History
	Version
	Date
	Author
	Change Summary

	0.2
	3/15/2016
	Erik Lewerenz
	Initial version

	0.3
	3/25/2016
	Erik Lewerenz
	Updated docs based on feedback.

	0.4
	4/6/2016
	Erik Lewerenz
	Added information on accessibility paths. Added FocusInfo

	0.5
	6/8/2016
	Erik Lewerenz
	Added ‘LatestReport’ and ‘LatestImage’. Updated example

	0.6
	12/12/2016
	Erik Lewerenz
	Added Device Discovery

	0.7
	1/5/2017
	Erik Lewerenz
	Improved Documentation

	0.8
	1/11/2017
	Erik Lewerenz
	Improved Documentation. LatestImage, LatestReport

	0.9
	4/13/2017
	Eldad Ben Shalom
	Created Appendix B for WebSockets communication + step by step code example for sending/receiving K-commands data.

	1.1
	[bookmark: _GoBack]11/27/2017
	Erik Lewerenz
	Added support for sending commands through a WebSockets connection. Updated example. Added the DebugOutput option

[bookmark: _Toc479836707]Introduction
The MicroHAWK reader is a powerful and flexible platform which can work with a wide variety of applications. This is achieved by providing a REST API. Microscan also provides an SDK.NET which can be used to supplement .NET applications and a small yet fully functional C#.NET example application.
[bookmark: _Toc479836708]Microscan SDK.NET Reference
The Microscan.SDK.NET provides a number of services that can be consumed by .NET controls. This provides native .NET access to Read Cycle output data along with native .NET image objects. The API is quite simple which allows more flexibility in your application use of the SDK.
[bookmark: _Toc479836709]SDK Objects
[bookmark: _Toc479836710]Connector
The Connector is a singleton that provides an instance that can be used to gain access to a ReaderDevice object.
ReaderDevice UseReader(string ipAddr)
For example:
Microscan.SDK.Connector _connector = MSDK.Connector.Instance;
Microscan.SDK.ReaderDevice _reader = _connector.UseReader(“192.168.188.2”);
[bookmark: _Toc479836711]DeviceDiscovery
The DeviceDiscovery object provides the ability to scan the network for readers. To scan the network the SDK broadcasts UDP data which is captured by the accessible readers. Each reader will then respond on the same port which is then captured by the SDK and put into a UdpDevice list. Important: if using the DeviceDiscovery object please call StopScan().
For example:Microscan.SDK.DeviceDiscovery _discovery = _connector.Discovery;
Microscan.SDK.DeviceDiscovery.NewDevice += DeviceDiscovery_NewDevice;
_discovery.StartScan();
…
_discovery.StopScan();

The SDK will scan once every time ‘StartScan()’ is called. It will create ‘NewDevice’ event when a device responds to the UDP broadcast. At this point the _discovery.DeviceList can be retrieved. It contains a list of UdpDevice objects that contain the ipAddr and devInfo for the object.
	.NET Structure
	Attribute
	Type
	Description

	ReaderDeviceInfo
	
	

	
	age
	DateTime
	When the item found last

	
	appCode
	string
	The firmware version running in the reader

	
	comm
	string
	USB, Ethernet, RS232

	
	description
	string
	Device description

	
	dhcp
	bool
	Is DHCP enabled on this device?

	
	eipVid
	string
	The EIP Vendor ID if applicable

	
	gateway
	IPAddress
	Ethernet gateway address

	
	ipAddr
	IPAddress
	IP Address

	
	macAddr
	string
	The device’s MAC Address

	
	model
	string
	Model (“MicroHAWK ID-40”)

	
	name
	string
	The name of the reader (can be set using K412)

	
	partNumber
	string
	The reader’s part number (factory set)

	
	runtime
	string
	Runtime type (“reader”)

	
	serial
	string
	Serial Number

	
	subnet
	IPAddress
	Subnet for the device

	
	tcpPort1
	uint
	TCP Port 1 address

	
	tcpPort2
	uint
	TCP Port 2 address

	
	url
	string
	The device’s WebLink address

[bookmark: _Toc479836712]ReaderDevice
The ReaderDevice provides a ReportConnection which provides further access to the reader through the REST API as described below:
Microscan.SDK.ReaderCycleReportConnection reportConnection = _reader.ReportConnection

[image:] [image:] [image:]
Each read cycle has multiple images taken. FIRST_QUALIFIED will attempt to find an image with a decoded symbol.
DrawGraphics is only available for PNG images.
For example:_imageOptions = _reportConnection.ImageOptions
_imageOptions.ImageFetch = MSDK.IMAGE_FETCH.FIRST_QUALIFIED;
_imageOptions.ImageFormat = MSDK.IMAGE_FORMAT.PNG;
_imageOptions.Decimate = 0;
_imageOptions.DrawGraphics = true;

[bookmark: _ReportConnection][bookmark: _Toc479836713]ReportConnection
The reader has the ability to send out cycle reports for each read cycle describing the output of the read cycle along with information on the images available from the read cycle. This information and notification is done through the ReportConnection. The following events are available
Closed - This event is triggered when the SDK and reader lose connection.
Opened - This event is triggered when the SDK and reader connect.
NewImage - This event is triggered when a new image is available
NewImageReport - This event is triggered when the requested image is available.
NewOutData – This event is triggered when new output data is available from the reader
NewReport – This event is triggered when a new Report is available from the reader. The output is a ReaderCycleReport object
LatestImage – Returns the latest image retrieved from the reader after the read cycle. This is useful if the application isn’t already listening to the ‘NewImage’ event and wants the latest image.
LatestReport – Returns the latest report object. This is useful if the application isn’t already listening to the ‘NewReport’ event and wants to retrieve the latest report.

There are also a couple fields of interest including the Throttle and ImageOptions mentioned above. The Throttle field will prevent reports showing up faster than designated. In the sample we set this to 300 (ms). There is the possibility that this will cause dropped or lost reports but this is designed to prevent overwhelming the application or causing the application to adversely affect the reader’s read cycle by requesting too many images in a row.
[bookmark: _Toc479836714]Reader Cycle Report
The Reader Cycle Report object contains information regarding the read cycle defined below:
Table 1: Reader Cycle Report Definition
	.NET Structure
	Attribute
	Type
	Description

	ReaderCycleReport
	
	

	
	cycleId
	string
	cycle report id

	
	imageRecords
	list
	list of image records

	
	ipAddr
	string
	IP Address of the reader

	
	ipReports
	list
	list of IP reports

	
	memInfo
	MemInfo
	memory information

	
	cpuInfo
	CPUInfo
	CPU information (temp, clock)

	
	counters
	Counters
	Relevant read cycle counters

	
	cycleInfo
	CycleInfo
	read cycle information (mismatch, match, noread, goodread, ...)

	
	matchStatus
	bool
	overall match status - !mismatchState

	
	cycleStatus
	bool
	if the read cycle was a success

	
	decodeStatus
	bool
	if the right number of decodes was found

	
	imageApiInfo
	ImageApiInfo
	image timing information (web, png, decimate)

	
	outData
	string
	output data

	
	imageSaveInfo
	ImageSaveInfo
	Information regarding the image save operations - K763, K764

	
	symbolQualifyReports
	list
	list of symbol qualify reports

	
	timingInfo
	TimingInfo
	timing information - read cycle time, read time, capture time

	
	sensorInfo
	SensorInfo
	sensor information - width, height, binning

	
	ioData
	IoData
	Outputs 1, 2, and 3 status

	
	focusInfo
	focusInfo
	Focus information – distance, units, mode

	
	
	
	

	Decode – Accessible through the ReaderCycleReport / IpReports / DecodeReports

	
	corners
	Point array
	Bounding box of the decode object

	
	dId
	string
	decode ID

	
	timeLocalize
	int
	Time in microseconds that the decoder spent to localize candidate

	
	timeDecode
	int
	Time in microseconds that the decoder spent in the symbology specific routines

	
	ppe
	double
	pixels per element of the symbol (1D - average minimum bar)

	
	symbolType
	string
	symbol type (DataMatrix, Code39,...)

	
	symbolData
	string
	data of the decoded symbol

	
	qualStatus
	int
	???

	
	
	
	

	ImageRecord – Accessible through the ReaderCycleReport / ImageRecords

	
	image
	Image
	

	
	ipReport
	IpReport
	baseline IP report

	
	cycleId
	string
	corresponding cycle id

	
	uId
	string
	Unique ID

	
	exposure
	int
	current exposure

	
	gain
	int
	current gain

	
	focus
	int
	current focus

	
	index
	int
	index of the image

	
	indexTotal
	int
	total images for the read cycle

	
	woi
	Rectangle
	window of interest for the current image

	
	effectiveWidth
	int
	width of the woi * binning value (2 if binning otherwise 1)

	
	effectiveHeight
	int
	height of the woi * binning value (2 if binning otherwise 1)

	
	captureTime
	int
	capture time for the image

	
	
	
	

	
	sensorInfo
	SensorInfo
	sensor information

	
	
	
	

	SymbolQualifyReport – Accessible through the ReaderCycleReport / symbolQualifyReports

	
	dId
	string
	decode id

	
	status
	int
	

	
	
	
	

	TimingInfo – Accessible through the ReaderCycleReport / timingInfo

	
	cycleTime
	int
	total cycle time

	
	readTime
	int
	total read time

	
	captureTime
	int
	total capture time - accumulation of capture times from image records

	
	
	
	

	SensorInfo – Accessible through the ReaderCycleReport / sensorInfo

	
	width
	int
	width of the sensor

	
	height
	int
	height of the sensor

	
	binning
	bool
	if binning is enabled

	
	
	
	

	CycleInfo – Accessible through ReaderCycleInfo / cycleInfo

	
	msimatchState
	bool
	mismatch state for this cycle

	
	matchState
	bool
	match state for this cycle

	
	moreadState
	bool
	noread state for this cycle

	
	mismatchCount
	int
	mismatch count

	
	goodReadCount
	int
	good read count

	
	numNeeded
	int
	number needed for a valid successful read cycle

	
	
	
	

	Counters – Accessible through ReaderCycleInfo / counters

	
	trigger
	int
	total number of triggers that have occurred since power-on or the last Trigger Counter Reset command

	
	noread
	int
	total number of noread readcycles that have occurred since power-on or the last Noread Readcycle Counter Reset command

	
	mismatch
	int
	total number of mismatched code pre readcycle that have occurred since power-on or the last Mismatch per Readcycle Counter Reset command

	
	noreadSymbols
	int
	total number of noreads that have occurred since power-on or the last Noread Counter Reset command

	
	matchSymbols
	int
	either (1) the total number of good reads that match the master label or (2) the total number of good reads, or decodes

	
	mismatch Symbols
	int
	total number of symbols successfully read that do not match the master label since power-on or the last Mismatch Counter command

	
	
	
	

	ImageApiInfo – Accessible through ReaderCycleInfo / ImageApiInfo

	
	web
	float
	amount of time it takes to handle the web API

	
	png
	float
	amount of time it takes to create the PNG

	
	decimate
	float
	amount of time it took to Decimate the image

	
	
	
	

	IpReport – Accessible through ReaderCycleInfo / ipReports

	
	decodes
	list
	list of decodes for the image processing report

	
	uId
	string
	unique ID

	

	
	
	
	

	MemInfo – Accessible through ReaderCycleInfo / memInfo

	
	memAvail
	int
	memory available in RAM

	
	memContig
	int
	contiguous memory in RAM

	
	memFrags
	int
	fragmented memory in RAM

	
	
	
	

	CPUInfo – Accessible through ReaderCycleInfo / cpuInfo

	
	tempC
	int
	temperature of the CPU in Celsius

	
	clock
	int
	CPU clock value

	
	
	
	

	ImageSaveInfo – Accessible through ReaderCycleInfo / imageSaveInfo

	
	ramDriveSize
	double
	the current size of the ram drive

	
	ramDriveFree
	double
	amount of storage free on the RAM drive

	
	ramDriveNeed
	double
	amount of memory needed on the RAM drive for image storage

	
	allImgSaved
	bool
	Were all the images saved on the RAM drive for the read cycle

	
	
	
	

	IoData – Accessible through the ReadCycleInfo / ioData

	
	out1
	bool
	output 1 was asserted during this read cycle

	
	out2
	bool
	output 2 was asserted during this read cycle

	
	out3
	bool
	output 3 was asserted during this read cycle

	
	
	
	

	FocusInfo – Accessible throush ReaderCycleInfo / focusInfo

	
	focus
	Int
	Focus distance value

	
	units
	int
	mm or inches

	
	mode
	int
	0 – User Configurable, 1 – Refocus after noreadlimit is reached

	
	noreadLimit
	int
	How many noreads to hit before refocus occurs. Default is 5.

[bookmark: _Toc479836715]Reader CommandConnection
The reader settings can be set using K-Cmds. These are of the form <Knnn,x,y> where nnn is a three-digit number and x and y are parameters of the command. These commands can be sent through the reader’s CommandConnection. The following events are available
Closed - This event is triggered when the SDK and reader lose connection.
Opened - This event is triggered when the SDK and reader connect.
NewOutData – This event is triggered when new output data is available from the reader

Not every command sent to the reader gets a response. See the MicroHAWK documentation for relevant settings. Note that the fully formed command with the command delimiters need to be sent to be valid.
Reader Command Connection without the SDK
It is possible to connect to the reader and send/receive command data without using the SDK. Just open a WebSockets connection to the reader and start sending and receiving the command data. Use the IP address of the reader along with port 50501.
ws://ipaddr:port ws://192.168.188.2:50501/
This can be tested using the Chrome browser along with the Simple WebSocket Client plugin
[image:]
[bookmark: _Toc479836716]Threads
The events provided by the SDK will not interrupt the main UI thread. This is done by the SDK automatically by checking to see if the event client is the UI thread. If it is then it will perform a BeginInvoke/EndInvoke itself. If the client isn’t the UI thread then it uses a DynamicInvoke. This allows the developer to assume it will always be in the right context.
[bookmark: _Toc479836717]DebugOutput
The DeviceDiscovery, ReaderCycleReportConnection, and ReaderCommandConnection all have a ‘DebugOutput’ option which will show some output from the SDK when certain events occur. This is disabled by default. To enable, just set the Boolean to true:
 _reportConnection.DebugOutput = true;
 _commandConnection.DebugOutput = true;
 MSDK.DeviceDiscovery.DebugOutput = true; //this is a static bool for device discovery
Microscan SDK.NET Example
The Microscan SDK.NET Example was created using Visual Studio 2010 along with .NET 4.0 using C#. It is a simple application which exercises most of the available SDK functionality.

Send and receive reader commands
Use DeviceDiscovery to find the devices on the network
Connection events, auto disconnects when WebLink connects
Image options
Cycle Report data
Get latest image or report manually
Picturebox for displaying the reader images

[image:]

[bookmark: _Toc479836718]Installation
To use the SDK sample:
1. Copy the folder SDK.NET-1.0 Example to a location of your preference on the hard drive
1. From Visual Studio load example solution located at C:\<path_copied_to>\SDK.NET-1.0 Example
1. Once loaded, select build solution from the build menu to create the executable which by default will be located in the directory:
C:\<path_copied_to>\\SDK.NET-1.0 Example\bin\Debug\SDK.NET-1.0 Example.exe
Launch the executable. At this point you should be able to click the ‘Scan’ button to search for readers on your network or type in a reader address and click ‘Start’.
NOTE: The reader must be running active read cycles in order to see the image being updated. Get Last Image and Get Report will do nothing if the reader is in triggered mode waiting for a trigger.
Getting reports (C#)Code 1: Report connection example
using MSDK = Microscan.SDK;
// get the Connector
var connector = MSDK.Connector.Instance;

// use a reader device
reader = connector.UseReader("192.168.188.2");

// get the reader’s report connection
reportConnection = reader.ReportConnection;

// connect an event handler for new reports
reportConnection.NewReport += ReportConnection_NewReport;
// start the report connection
reportConnection.Start();
// handle the NewReport event
private void ReportConnection_NewReport(MSDK.ReaderCycleReport report)
{
 tOutData.Text = report.outData;
 tReadTime.Text = String.Format("{0} ms", report.timingInfo.readTime);
}
// connect an event handler for new image reports
reportConnection.NewImageReport += ReportConnection_NewImageReport;
// set any image options (optional)
imageOptions = reportConnection.ImageOptions;
imageOptions.ImageFetch = MSDK.IMAGE_FETCH.FIRST_QUALIFIED;
imageOptions.ImageFormat = MSDK.IMAGE_FORMAT.PNG;
imageOptions.Decimate = 0;
imageOptions.DrawGraphics = true;
// handle the NewReport event
private void ReportConnection_NewReport(MSDK.ReaderCycleReport report)
{
 tOutData.Text = report.outData;
 tReadTime.Text = String.Format("{0} ms", report.timingInfo.readTime);
}
// handle the NewImageReport event
// The Image property is a standard .NET image, and can be set directly
// into the picture box control
private void ReportConnection_NewImageReport(MSDK.ImageReport imageReport)
{
 imagePictureBox.Image = imageReport.Image;
}

	private void bttnGetLastReport_Click(object sender, EventArgs e)
{
	if (!_reportConnection.IsOpen()) return;
	//get the last report
	var report = _reportConnection.LatestReport;
	tOutData.Text = report.outData;
	tReadTime.Text = String.Format("{0} ms", report.timingInfo.readTime);
}

private void bttnGetLastImage_Click(object sender, EventArgs e)
{
	if (!_reportConnection.IsOpen()) return;
	//get the last image - make sure to connect first
	imagePictureBox.Image = _reportConnection.LatestImage;
}

Code 2: LatestReport & LatestImage
Sending Commands (C#)Code 3: Command Support

using MSDK = Microscan.SDK;
// get the Connector
var connector = MSDK.Connector.Instance;

// use a reader device
_reader = connector.UseReader("192.168.188.2");

// open then get the WebSocket command connection.
// This is a separate operation because a user may not always want to have
// a command connection open to the reader.
_reader.CreateCommandConnection();
_commandConnection = _reader.CommandConnection;

// connect an event handler for new reports
_commandConnection.Closed += CommandConnection_Closed;
_commandConnection.NewOutData += CommandConnection_NewReport;

// open the command connection
_commandConnection.Start();

// handle the NewReport event. These are the command responses (if there are any)
private void CommandConnection_NewReport(string response)
{
 cmdResponse.AppendText(response);
}

private void CommandConnection_Closed(object obj)
{
 cmdResponse.Text = @"Connection Closed";
}

private void buttonSendCommand_Click(object sender, EventArgs e)
{
 var cmd = cmdTextBox.Text;
 if (cmd.Length > 0)
 {
 // Send a command using the commandConnection SendCommand function
 _commandConnection.SendCommand(cmd);
 }	
}

Device Discovery (C#)Code 4: Device discovery example
using MSDK = Microscan.SDK;
// get the Connector
MSDK.DeviceDiscovery _discovery = MSDK.Connector.Instance.Discovery;

// connect an event handler for new device notifications
MSDK.DeviceDiscovery.NewDevice += DeviceDiscovery_NewDevice;

// scan for devices on your network
_discovery.StartScan();
…
// handle the NewReport event
private void DeviceDiscovery_NewDevice(MSDK.UdpDevice dev)
{
 UpdateDevices();
}
//Update the device list combobox
private void UpdateDevices()
{
 var list = _discovery.DeviceList;
 foreach (var dev in list)
 {
 if (!comboDevices.Items.Contains(dev.ipAddr.ToString()))
 {
 comboDevices.Items.Add(dev.ipAddr.ToString());
 }
 }
}
//make sure to call StopScan() when done
_discovery.StopScan()

[bookmark: _Toc479836719]Appendix A - Microscan WebLink REST API Reference
[bookmark: _Toc479836720]File Service
This API retrieves a directory listing for the web server directory or sub directory of the web server using a GET request. It also allows for uploading of files via a POST request. If the file uploaded ends with the extension .zip the file will be unzipped in the specified folder.
1. GET on a directory will return a json formatted file listing the directory contents. Each sub file or directory will have a 'name', 'dir', and 'size'. The 'dir' is a true or false.
2. GET on a file within a directory will return the file contents returned as plain text
3. GET on a missing file will return 404 error in the header response
4. POST will handle uploading a file to a specified directory (root or sub directory)
5. POST of a .zip file will result in the file being unzipped in the selected directory.
Example: http://10.10.5.23/api/v1/file
Returns:
{"data":[{"name":"404.html","dir":false,"size":816}, {"name":"404.png","dir":false,"size":45286}, {"name":"favicon.ico","dir":false,"size":5430}, {"name":"index.html","dir":false,"size":147}, {"name":"48CR_Web_Connect","dir":true,"size":0}, {"name":"device","dir":true,"size":0}, {"name":"lang","dir":true,"size":0}, {"name":"proprietary","dir":true,"size":0}, {"name":"views","dir":true,"size":0}, {"name":"shared","dir":true,"size":0}, {"name":"user","dir":true,"size":0}]}
[bookmark: _Toc479836721]Image Service
The image buffer can be either from an index or most recent. Image is a minimum 640x480 resolution. This API retrieves an image with a default type of PNG. Buffer can be either from an index or most recent.
The Image Service has the following Parameters:
 Decimate; Returns a scaled image (Default = 0 or full scale image)
 0 = Full Scale Image
 1 = Half Scale Image
 2 = Quarter Scale Image
 3 = Eight Scale Image

Example: http://192.168.188.2/api/v1/image/?decimate=3

 Format: Returns the specified format (Default is PNG)
 PNG = PNG image format
 JPEG = jpeg image format

Example: http://192.168.188.2/api/v1/image/?format=jpeg

 Compressed: Returns a compressed image (Default = 0 or FALSE)
 1 = TRUE
 0 = FALSE
Example: http://192.168.188.2/api/v1/image/?compressed=1
 Type: Used to retrieve the inspected image type (Default is “Last”)
 Last = Last image taken
 NoRead = Last no read image taken
 GoodRead = Last good read image taken
Example: http://192.168.188.2/api/v1/image/?type=noread
 UID: Used to retrieve an image using the specified UID number (HEX)
Example: http://192.168.188.2/api/v1/image/?uid=0x09
 Quality: Used to set the quality of the jpeg image returned (Default = 0)

Example: http://192.168.188.2/api/v1/image/?format=jpeg&quality=80

[bookmark: _Toc479848918][bookmark: _Toc479836722]Appendix B – WebSockets interface for K-Commands communication
[bookmark: _Toc479848919][bookmark: _Toc479836723]WebSockets communication - Overview
The MicroHAWK reader supports WebSockets communication. WebSockets are defined as a two-way communication between servers and clients. This protocol defines a full duplex communication which is on the top of HTTP protocol. WebSockets are real time communication between two endpoints which are established after a handshake between server and client. The connection then stays open until disconnected, as opposed to standard HTTP communication where the connection is opened and closed on every data transfer.
[bookmark: _Toc479848920][bookmark: _Toc479836724]WebSockets with MicroHAWK ID readers
Microscan readers based on the MicroHAWK platform support WebSockets communication on the server. This means that the reader is acting as a WebSockets server, while a host application running on a remote device communicates with the reader is a WebSockets client.
Once connected, WebSockets communication allows the client to send K-commands which are text commands sent to the reader for configuration and control of the device. The K-command reply is sent back from the reader over the same connection. For more details about K-commands please refer to the MicroHAWK ID reader manual.
Notice that the cycle reports are sent on a separate WebSockets connection. For more info, please refer to ‘Report Connection’ section earlier in this SDK reference.
[bookmark: _Toc479848921][bookmark: _Toc479836725]WebSockets Example – Step by Step
In this C# example, we will walk you step by step through the process of building a very simple client application using the library Websocket4Net. This example will demonstrate the following:
• Opening a WebSockets connection with the reader
• Defining event handlers for the WebSockets communication
• Sending commands to the reader
• Receiving command reply from the reader
• Closing the connection
[bookmark: _Toc479848922][bookmark: _Toc479836726]Getting started
1) Create a new Windows Forms project in Visual Studio. It is not a must to use Windows Form, but for the sake of this example it will be easier. This example is done with Visual Studio 2015.
2) Add to the project Websocket4Net.dll as a reference (download it from this link in case you don’t have it: www.websocket4net.codeplex.com).
[image:]

3) In the source file Form1.cs, add the required reference:
using WebSocket4Net;

4) Add the required controls to your Windows Form (button, textbox…). In my example, the form looks like this:

[image:]

[bookmark: _Toc479836727]Open a WebSockets Connection
To open a WebSockets connection, you need to create an instance of WebSockets, giving the correct URL with the reader as a server:
websocket = new WebSocket("ws://192.168.188.2:50501/");
In the line above, WebSocket instance is created with the name websocket, with a reader IP address 192.168.188.2 which is the default IP address of the reader. The number 50501 is the K-command WebSockets port number.
[bookmark: _Toc479848924][bookmark: _Toc479836728]Defining event handlers
The WebSocket class will raise events on specific actions like connection opened, data received… Handling events require hooking up event handlers as follows:
Event handler for an opened connection:
websocket.Opened += new EventHandler(websocket_Opened);

Event handler for a closed connection:

websocket.Closed += new EventHandler(websocket_Closed);

Event handler for receiving data:

websocket.MessageReceived += new EventHandler<MessageReceivedEventArgs>(websocket_MessageReceived);
Now we also need to define the handler functions for each one of the above events. The handler function will be called when the corresponding event rises. (Log can be a simple function to display text string as user output).
Handler function for connection opened event:
private void websocket_Opened(object sender, EventArgs e)
{
 Log("Websocket opened \r\n");
}
Handler function for connection closed event:
private void websocket_Closed(object sender, EventArgs e)
{
 Log("Websocket closed \r\n");
}

Handler function for message received event:
private void websocket_MessageReceived(object sender, MessageReceivedEventArgs e)
{
 Log(e.Message);
}

When the WebSocket is opened, it will show ‘Websocket opened’. When data is received from the reader (server) over this WebSocket, it will show ‘Websocket message received’.
[bookmark: _Toc479848925][bookmark: _Toc479836729]Receive data from the reader
When data is received from the reader the websocket_MessageReceived function will be called. In the example, the received text is simply fed into Log function which simply displays the message as output. Just insert code in that function to handle the incoming data from the reader. Be aware that the handler may be called on a separate thread than the UI so you may have to use a delegate to get back on the main thread.
[bookmark: _Toc479848926][bookmark: _Toc479836730]Send data to the reader
To send data to the reader, use the following method:
websocket.Send("<K231?>");
This will send the given K-command string directly to the reader over the opened WebSockets connection.
[bookmark: _Toc479848927][bookmark: _Toc479836731]Closing a WebSockets Connection
To close the websocket connection with the reader, use the following method:
websocket.Close();
As mentioned above, when the WebSockets connection is closed, it will launch the ‘Websocket closed’ event.
Notice that there are more events and methods possible. For more info please refer to the documentation of Websocket4Net library. In this document, we show a minimal code example to get started.
[bookmark: _Toc479848928][bookmark: _Toc479836732]Complete source code
See below the original source code for the example discussed in this chapter. The text below is the content of the file: Form1.cs, which corresponds to the UI described in the screenshot above. To get the complete project file of this code example or any other advice, please contact Microscan support.
//##//#
//# Application Name: Websocket commander Microhawk ID reader
//#
//# Author: Eldad Ben Shalom, Application Engineer Microscan Europe 2017
//#
//# Description: This code example shows how to communicate and control AutoID
//# reader MicroHAWK via a WebSockets connection. For the WebSockets functionality //# the library WebSocket4Net is used.
//#
//# Application Usage: Type the correct IP address, then press the Connect button.
//# To send K-command type the command text in the command input textbox, then press
//# the Send button.
//# The command output results from the reader will be shown in the log window.
//#
//# Note:
//# The reader decode output results are not sent over the same Websocket (Port
//# 50501) which is used for sending K-commands.
//# To view also the decode output, one option is to open another Websocket
//# (Port 50502), a second option is to
//# use Microscan library to retrieve report results.
//#
//##

using System;
using System.Windows.Forms;
using WebSocket4Net;

namespace WebsocketClient
{
 public partial class Form1 : Form
 {
 //websocket object for sending K-commands to reader
 WebSocket websocket;

 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {

 }

 //button open ---
 private void button1_Click(object sender, EventArgs e)
 {
 //create new websocket for sending K-commands
 websocket = new WebSocket("ws://" + textBox3.Text + ":50501/");
 //websocket events
 websocket.Opened += new EventHandler(websocket_Opened);
 websocket.Closed += new EventHandler(websocket_Closed);
 websocket.MessageReceived += new EventHandler<MessageReceivedEventArgs>(websocket_MessageReceived);
 //open now the websocket
 websocket.Open();
 }

 //EventHandler - Message Received --
 private void websocket_MessageReceived(object sender, MessageReceivedEventArgs e)
 {
 textBox1.AppendText(e.Message);
 }
 //EventHandler - Error ---
 private void websocket_Error(object sender, EventArgs e)
 {
 Log("Websocket error \r\n");
 }
 //EventHandler - Opened --
 private void websocket_Opened(object sender, EventArgs e)
 {
 Log("Websocket opened \r\n");
 }
 //EventHandler - Closed --
 private void websocket_Closed(object sender, EventArgs e)
 {
 Log("Websocket closed \r\n");
 }

 //button close ---
 private void button2_Click(object sender, EventArgs e)
 {
 websocket.Close();
 }

 //button send --
 private void button3_Click(object sender, EventArgs e)
 {
 Log("Sent: " + textBox2.Text + "\r\n");
 websocket.Send(textBox2.Text);
 }

 //append text to log window --
 public void Log(string data)
 {
 textBox1.AppendText(data);
 }

 }
}

[bookmark: _Toc479848929][bookmark: _Toc479836733]Receiving cycle report results via WebSockets
In the description above, in order to open the WebSockets connection we used the following line of code:
websocket = new WebSocket("ws://192.168.188.2:50501/");
Notice that the port number used in the URL is 50501. Over this port number the reader receives K-commands and sends back only K-commands results – and not code reading results. The code reading results are included in the cycle report results which is a long list of information received every cycle from the reader. To get this data, one option is to use Microscan SDK events described earlier in this document. A second option is to use a second WebSockets connection, this time using port number 50502. So, for example, to open a WebSockets connection for getting cycle reports, we will use the following line of code:
websocket = new WebSocket("ws://192.168.188.2:50502/");
Then we will need to define Message received event handler for this WebSockets connection as well. To see how it is done, please refer to the relevant section earlier in this document.

Page 3

image3.png

image4.png

image5.png

image6.png

image7.emf
ImageOptions

Class

Fields

Decimate

DrawGraphics

ImageFetch

ImageFormat

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image1.png

image2.png

