
Visionscape® .NET Programmer’s
Manual

84-100023-02 Rev B

v6.1.1, January 2014

Copyright ©2014
Microscan Systems, Inc.
Tel: +1.425.226.5700 / 800.762.1149
Fax: +1.425.226.8250

ISO 9001 Certified
Issued by TüV USA

All rights reserved. The information contained herein is proprietary and is provided solely for the purpose of
allowing customers to operate and/or service Microscan manufactured equipment and is not to be released,
reproduced, or used for any other purpose without written permission of Microscan.

Throughout this manual, trademarked names might be used. We state herein that we are using the names to the
benefit of the trademark owner, with no intention of infringement.

Disclaimer
The information and specifications described in this manual are subject to change without notice.

Latest Manual Version
For the latest version of this manual, see the Download Center on our web site at:
www.microscan.com.

Technical Support
For technical support, e-mail: helpdesk@microscan.com.

Warranty
For current warranty information, see: www.microscan.com/warranty.

Microscan Systems, Inc.

United States Corporate Headquarters
+1.425.226.5700 / 800.762.1149

United States Northeast Technology Center
+1.603.598.8400 / 800.468.9503

European Headquarters
+31.172.423360

Asia Pacific Headquarters
+65.6846.1214

www.microscan.com

Contents

PREFACE Welcome! xi

Purpose of This Manual xi
Manual Conventions xi

CHAPTER 1 Introduction 1-1

Visionscape Architecture 1-1
Visionscape Devices 1-5
Programming Language Considerations 1-6

Visual Studio 2008 1-6
The Big Picture 1-6

Jobs 1-7
Devices 1-7
A Job Must be Connected to a Device Before it Can Run 1-7
You Control your Running Inspections Through the Device 1-7
You Receive Images and Data from Running Inspections via Report
Connections 1-7
You Display Images using the BufferView control 1-8
Smart Cameras May Be Handled Differently 1-8
I/O is handled through the IOConnection object 1-8
Setup Capabilities are Provided by the SetupManager Control 1-9

CHAPTER 2 Jobs, Steps and Datums 2-1

Introduction to the Visionscape.Steps Namespace 2-1
Jobs and Job Files 2-1
Steps 2-2
Datums 2-2
Visionscape .NET Programmer’s Manual iii

Contents
Important Step Types 2-2
JobStep 2-3
VisionSystemStep 2-3
Inspection Step 2-3
Snapshot Step 2-4
Acquire Step 2-4

Visionscape.Steps and The Step Object 2-4
Job Step 2-5
The Step Object 2-5

Steps Are Collections 2-5
The Step Object Provides Many Properties That Describe the Step 2-7
The Step Object Has Many Methods for Finding Child Steps 2-7
The Step Object Can Add and Remove Steps From Your Job 2-7
Every Step Contains a Collection of Datums 2-7

The Major Properties That Describe A Step 2-7
Finding Steps in the Step Tree 2-10
Adding and Removing Steps 2-14
Accessing a Step’s Datum Values 2-21
Modifying Datum Values 2-25
Using StepBrowser to Look Up Symbolic Names 2-49
The JobStep Object 2-50
The VisionSystemStep Object 2-53
Step Object Properties 2-55
Step Object Methods 2-59
Datum Object Properties 2-62
Datum Object Methods 2-66
Step Handles: Converting to Step Objects 2-68

CHAPTER 3 Talking to Visionscape Hardware: VsCoordinator and
VsDevice 3-1

Introduction to the Visionscape.Devices Namespace 3-1
VsCoordinator 3-2
VsDevice 3-2
VsCoordinator and Device Discovery 3-2

How Devices Are Discovered 3-3
Waiting for Device Discovery by Using “Device Focus” 3-5

Connecting Jobs to Visionscape Devices 3-6
What Else Can I Do With Device Objects? 3-12

A Detailed Look at VsDevice 3-15
Device Control Functions 3-15

Start / Stop Inspections 3-16
iv Visionscape .NET Programmer’s Manual

Contents
Downloading a Job 3-16
Uploading a Job 3-19

Obtaining Device Information 3-20
Basic Device Information 3-21
DeviceClass Property 3-21
IsHostBased Property 3-22
Determining if Any Inspections are Running 3-22
Determining if a Particular Inspection is Running 3-22
Device States 3-23
Special Device States 3-23
Determining the I/O Capabilities of a Device 3-24
UDPInfo Available for Networked Devices 3-25
Retrieving Basic Information on the Loaded Job 3-26
Namespace Information 3-26
VsNameNode 3-29
VsNameNode Properties 3-29
VsNameNode Methods 3-31

A Detailed Look at VsCoordinator 3-32
Device Collection 3-33
DeviceFocusSet 3-33
Device Focus Property 3-34
DeviceFocusSetOnDiscovery 3-34
Finding a Device by Name or IP 3-35
OnDeviceDiscovered Event 3-35
Using Message Broadcasting to Simplify Application Design 3-35
UpdateUI Method 3-37
LogMessage and the Debug Window 3-37
Getting Information About Local Network Interface Controllers 3-38
VsCoordinator Reference 3-39
Device Enumeration and Device Focus 3-39
UI Coordination 3-40
Miscellaneous 3-41
VsDevice Reference 3-42
Download / Upload Job 3-43
Control 3-44
Advanced 3-45

CHAPTER 4 Receiving Data with Report Connections 4-1

Introduction to the Visionscape.Communications Namespace: 4-1
ReportConnection Object 4-2

Creating a Report Connection 4-2
Connection Details 4-3
Visionscape .NET Programmer’s Manual v

Contents
The NewReport Event 4-7
Adding Records to Your Report Programmatically 4-8

DataRecordAdd Examples: 4-10
Adding Images to Your Report 4-12

Adding All of the Snapshot Images in an Inspection to the Report 4-12
AddSnapBuffers Examples 4-13
Now I Have Images, How Do I Display Them? 4-14

Performance Considerations 4-15
Lossy vs Lossless 4-15
Don’t Spend too much time in the NewReport event handler 4-16
Separate ReportConnections for Images and Results 4-16

The InspectionReport Object 4-16
ReportInspectionStats Object 4-19
InspectionReportValue Object 4-21
ReportMemoryInfo object 4-26
Handling Reports on Separate Threads 4-27

Create the ThreadedResults Class 4-28
Use the ThreadedResults Class in the Form 4-31

Report Queue Connections 4-32
ReportQueueConnection Object 4-34

CHAPTER 5 I/O Capabilities 5-1

The IOConnection Object 5-1
I/O Basics 5-2
How to Use IOConnection 5-2
Properties and Methods of IOConnection 5-5
Events 5-7

CHAPTER 6 Image Display Controls 6-1

Adding the Controls to the Visual Studio Toolbox 6-1
The BufferView Control 6-2
The Filmstrip Control 6-4

Properties and Methods of Filmstrip 6-7

CHAPTER 7 Device Selection Controls 7-1

Adding the Controls to the Visual Studio Toolbox 7-1
The DeviceDropdown Control 7-2

The ToolStripDeviceDropdown Control 7-5

CHAPTER 8 Report Display Controls 8-1

Adding the Controls to the Visual Studio Toolbox 8-2
vi Visionscape .NET Programmer’s Manual

Contents
The ResultsView Control 8-2
AutoSizing Behavior 8-4
Properties 8-4
Methods 8-5

The StatsView Control 8-5
Properties 8-6
Methods 8-6

The ReportView Control 8-7
AutoSizing Behavior 8-8
Properties 8-8
Methods 8-9

The IOView Control 8-10
Properties 8-11
Methods 8-12

The IOTriggerView Control 8-13
Properties 8-14
Methods 8-15

CHAPTER 9 Runtime Utility Controls 9-1

Adding the Controls to the Visual Studio Toolbox 9-1
The QueueView Control 9-2

CHAPTER 10 Setup Mode Controls 10-1

Adding the Controls to the Visual Studio Toolbox 10-2
The Setup Manager Control 10-2

The Setup Manager Components 10-5
Setup Step List 10-8
Setup Manager Options 10-9
Showing, Hiding and Repositioning the Various Elements of Setup
Manager 10-11
Adjusting the Tryout Options 10-13

DoAcquire 10-13
UseTriggers 10-13
UseIO 10-14
TackImage 10-14
Visionscape .NET Programmer’s Manual vii

Contents
DefaultOptions = DoAcquire 10-14
Acquisition Methods 10-14
Tryout Functionality 10-17
Checking the Current State of the Control Using the “Can”
Property 10-17
Detecting State Changes 10-20
Properties, Methods and Events 10-21

Properties 10-21
Methods 10-25
Events 10-29

The StepTreeEditor Control 10-33
Properties 10-35
Methods 10-36
Events 10-37

APPENDIX A Loading and Running Jobs A-1

Loading and Running Jobs, Receiving Results and Images A-1
Getting Started A-1
Add References to Your Project A-2
Rename the Main Form A-3
Add Components to the Main Form A-3

Add Split Container, BufferView and ReportView A-3
Add the Code A-5

Application Startup A-6
Making Report Connections A-7
Handling Reports A-8
Handling Application Shut Down A-8
Compile and Run A-9
Additional Samples A-9
viii Visionscape .NET Programmer’s Manual

Preface
PREFACE Welcome

Purpose of This Manual

This manual contains detailed information about how to develop complete
custom Visionscape applications using Visual Studio 2008 and the .NET
framework.

Manual Conventions
The following typographical conventions are used throughout this manual.

• Items emphasizing important information are bolded.

• Menu selections, menu items and entries in screen images are
indicated as: Run (triggered), Modify..., etc.
Visionscape .NET Programmer’s Manual ix

Preface
x Visionscape .NET Programmer’s Manual

1

In
tr

o
d

u
ct

io
n

1

CHAPTER 1 Introduction

Visionscape® Architecture

The Visionscape® architecture is open, allowing multi-level access to a
wide variety of users ranging from factory-floor operators who monitor
vision operation, to engineers who set up, install, and/or modify vision
applications, to system integrators and low-level software developers who
develop custom vision applications.

After you install Visionscape®, you have a library of components that
allow programming access to the AVP files you’ve created in FrontRunner
as well as to Visionscape® hardware components. With these powerful
components, you can develop complete custom applications using Visual
Studio 2008 and the .NET framework.

As a Visionscape® programmer, you may customize access to underlying
components and provide specific end-user access, such as training and
running pre-configured jobs. Programmers can also utilize the
components to access specific features, such as live video, job creation,
training, and inspection execution.
Visionscape .NET Programmer’s Manual 1-1

Chapter 1 Introduction
FIGURE 1–1. Layered Architecture

Figure 1–1 shows a basic diagram of the Visionscape® component
hierarchy. At the topmost level (User Created Custom GUIs) are the end-
user applications running on a host PC using Windows®. These
applications are written in either C# or Visual Basic.NET.

The next level down shows the Visionscape® Display Components layer.
These high level visual components can be dropped onto a Windows
Form to provide high level functionality such as displaying images at
runtime, providing setup capabilities for your vision job, or viewing
uploaded vision results and report queue data.
1-2 Visionscape .NET Programmer’s Manual

Visionscape® Architecture

In
tr

o
d

u
ct

io
n

1

Table 1–1 lists the DLLs that provide display capabilities and the
components contained within each.

TABLE 1–1. .NET Display Components

Library Component Function Reference

Visionscape.Display.Image.DLL Provides components
designed to display
images.

Chapter 6

BufferView Displays a single image
buffer.

FilmStrip Displays multiple
images in a film-strip-
like fashion.

Visionscape.Display.Devices.DLL Provides components
to make device
discovery, display and
selection easier.

Chapter 7

DeviceDropdown A dropdown combo box
that provides a list of all
available devices.

ToolStripDevice
Dropdown

Identical to
DeviceDropdown, only
this version is for use in
ToolStrip controls.

Visionscape.Display.Reporting Provides components
that can be used to
display uploaded
inspection data as well
as to display and
manipulate IO.

Chapter 8

StatsView Displays inspection
stats (cycle time,
process time, etc.)

ResultsView Displays a list of
uploaded inspection
result data in a grid
format.

ReportView Combines the
StatsView and
ResultsView controls
and also displays the
current inspection
counts in a single
control.
Visionscape .NET Programmer’s Manual 1-3

Chapter 1 Introduction
IoView Displays a list of IO
buttons that
correspond to a user
defined range of IO
points. These buttons
will display the current
state of each IO point,
and can be clicked to
toggle their state.

IoTriggerView Provides the ability to
generate virtual IO
trigger pulses.

Visionscape.Display.Runtime Provides high-level
controls that would
typically be used at
runtime.

Chapter 9

QueueView Allows you to easily
display the contents of
an Inspection’s Part
Queue.

Visionscape.Display.Setup Provides high-level
controls that would
typically be used to
provide setup
functionality.

Chapter 10

SetupManager Can be connected to
the currently loaded
job, and allows the user
to acquire images, live
video, adjust tool
positions and
parameters. Also
allows the inspection
tools to be run, tested
and debugged.

StepTreeView Provides a tree view of
the currently loaded
Job.

TABLE 1–1. .NET Display Components
1-4 Visionscape .NET Programmer’s Manual

Visionscape® Architecture

In
tr

o
d

u
ct

io
n

1

The next level is the Visionscape® .NET Libraries layer. These are
software libraries that provide access to the core vision system
functionality required to develop and deploy vision applications. They
have no user interface associated with them. The following table lists the
available .NET software libraries:

The .NET Libraries talk directly to the next layer down, which is the
Visionscape Native layer. This layer includes the actual tools, such as
image acquisition, image pre-processing, feature extraction,
measurement computation, expression evaluation, control, and I/O.
These tools can run either directly on AVP hardware (Vision HAWKs) or
on the host PC with Visionscape® GigE cameras. There is no need to
programmatically interact directly with this layer, as the .NET library layer
provides all the functionality you will need.

Finally, at the lowest level is the Hardware Driver layer. No direct
programming access is required (or allowed) at this level. Our higher level
libraries deal with the hardware for you, insulating you from the
complexities of low level device access.

Visionscape® Devices

Historically we have used the name “Visionscape® Device” to refer to the
piece of hardware that you purchased from us. In the past, this was either
one of our frame grabber boards, or a smart camera. Starting with
Visionscape 4.0, we also support GigE cameras. The Visionscape
framework will create a special GigE “Device” to collect and provide
access to all of the GigE cameras discovered on your network. This GigE
system is a virtual device however, it does not represent a single piece of
hardware, but instead represents a collection hardware (your GigE
cameras). So consider a “Device” to be a Vision System, an object that
can acquire and inspect images, sometimes from more than one camera.

TABLE 1–2. .NET Software Libraries

Library

Visionscape.DLL

Visionscape.Steps.DLL

Visionscape.Communications.DLL

Visionscape.Devices.DLL
Visionscape .NET Programmer’s Manual 1-5

Chapter 1 Introduction
Visionscape Devices fall into these two categories:

• GigE Devices – As mentioned above, a GigE Device is a virtual
device that collects all discovered GigE cameras into a single object.
The Visionscape framework and your user interface code will interact
with the GigE cameras through this single Device.

• Smart Cameras — These devices are cameras with the Vision
Processing smarts built right in. A network connection is made to the
smart camera and this is used to download your AVP, as well as to
upload images and results at runtime. Jobs will run on the smart
camera independent of the PC. In fact, once you’ve downloaded a job
to a smart camera and started it running, you can disconnect your PC
and the smart camera will continue to run.

Programming Language Considerations

Visual Studio 2008

The Visionscape .NET libraries and all samples described in this manual
were created using Visual Studio 2008. The .NET libraries are built using
the .NET 3.5 framework.

The Big Picture

In the following chapters we will cover in depth all of the components that
make up VsKit.NET.

In this section, we want to try and give you a very general overview of the
key concepts involved with creating a typical user interface. This will
hopefully give you the “Big Picture” before you continue on through the
manual.

Jobs:

A Job is another name for your Vision program. Jobs are always saved to
disk with the AVP extension. So we will often refer to Job and AVP
interchangeably. A Job is made up of a series of “Steps”, which provide
vision and logic functionality. Jobs and Steps are covered in depth in
Chapter 2.
1-6 Visionscape .NET Programmer’s Manual

Visionscape® Architecture

In
tr

o
d

u
ct

io
n

1

Devices:

As mentioned above, the term “Device” is used to represent a piece of
Visionscape hardware, or in the case of GigE, a collection of GigE
cameras. Devices are represented by the VsDevice object, which is
covered in depth in Chapter 3.

A Job Must be Connected to a Device Before it Can Run:

A typical user interface would do the following when it starts up:

1. Load a Job from Disk.

2. Get a reference to the Visionscape Device that you want to run on. You
will need to wait for the Device to be discovered.

3. Connect the Job to the Device by either downloading to it, or by calling
SelectSystem.

4. Start the inspections.

5. Connect ReportConnection object in order to receive images and
results while running.

You Control your Running Inspections Through the Device:

Once you have connected your Job to your Device, you can start and
stop the inspections through calls to the VsDevice object.

You Receive Images and Data from Running Inspections via
Report Connections:

Once you have a Job running on a Device, you will typically want to watch
the images and results from the running inspections. To do this, you must
create a ReportConnection object, which can receive either images,
results or both. An event will be sent to your application whenever a new
report is available. Your event handler will receive an InspectionReport
object which holds all cycle report data. ReportConnections are covered
in depth in chapter 4.
Visionscape .NET Programmer’s Manual 1-7

Chapter 1 Introduction
You Display Images using the BufferView control:

As described above, your ReportConnection will send you an
InspectionReport object that contains your images and results. The
InspectonReport object has an Images collection, which is a collection of
BufferDm object. Images are always represented by the BufferDm object.
The BufferView control displays BufferDms, so it is very easy to take an
image from an InspectionReport, and display it in a BufferView control.
For a complete description of the BufferView object, refer to Chapter 6.

Smart Cameras May Be Handled Differently:

Smart cameras can run independently of the PC, and so they typically
have a Job already loaded and running. If your UI will be dealing with
smart cameras, it is likely that you will simply be “monitoring” them. This
means that you will simply connect to the device, and display results and
images, but not load a new Job to it. To monitor a smart camera, your
startup scenario would look more like this:

– Wait for discovery of the smart camera.

– Upon discovery, connect your ReportConnection(s).

– Display images and results when NewReport event received.

Note: You should understand that you absolutely can download a new
Job to your smart camera each time your UI starts up, if that’s the
behavior you want.

I/O is handled through the IOConnection object:

If you need to get or set I/O values, or you need to be notified when
certain I/O points change state, then you can use the IOConnection
object. This is covered in depth in Chapter 5.

Setup Capabilities are Provided by the SetupManager
Control:

If your user interface needs to provide “Setup Mode” capabilities where
the user can adjust tool positions and parameters, then you will need to
use the SetupManager component. This is covered in depth in Chapter 10.
1-8 Visionscape .NET Programmer’s Manual

2

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

CHAPTER 2 Jobs, Steps, and Datums

Introduction to the Visionscape.Steps namespace

In this chapter, we’ll discuss Jobs, and the Steps and Datums that
construct them. We’ll explain how to load a Job from disk, how you can
then access each of the Steps within that Job, and how you can get and
set any of the parameters (refered to as “Datums”) of those steps. We’ll
describe the Step and Datum interfaces, and how to use them to find
Steps, add or remove Steps, and how to get and set Datum values within
a Step.

Assembly Names: Visionscape.dll & Visionscape.Steps.dll
Namespace: Visionscape.Steps

Jobs and Job Files

We use the term “Job” to refer to any Visionscape vision inspection
program that you have created using our FrontRunner application, or from
code (more about that later). When saved to file, a Job will always have
the AVP file extension. For that reason, we also refer to Job files as AVPs.
A Job is essentially a collection of Steps in a tree structure.
Visionscape .NET Programmer’s Manual 2-1

Chapter 2 Jobs, Steps, and Datums
Steps

A Step is a single “tool” in a Vision Program. A user inserts Steps into the
Job in order to add functionality. A Step may run a vision algorithm like the
Blob Step or Fast Edge Step, it may perform measurements like the Pt to
Line Distance Step, or it may perform logical operations like the IF Step or
the VarAssign Step. Each Step contains a collection of Datums that
configure its specific functionality.

Datums

A Datum is a generic representation of a Step parameter. It encapsulates
all types of data, such as integers, floating point values, arrays, etc. The
“High Threshold” parameter of the Blob Step is an example of a Datum.

FIGURE 2–1. Example of a Job and the Steps and Datums Within It

Important Step Types

As shown above, a Job Tree is made up of a hierarchy of Steps. When
writing a Visionscape user interface, you should understand the purpose
of each of the Steps that are always at the top of the Hierarchy. The
example here shows the Step hierarchy of a default Job created in
FrontRunner.
2-2 Visionscape .NET Programmer’s Manual

Important Step Types

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

JobStep:

The JobStep is the top-most Step in the Job hierarchy. It acts as the
container for your Job, and therefore provides no direct functionality at
runtime. You can only have one JobStep loaded at a time. A JobStep can
hold the vision programs for multiple devices or just one.

VisionSystemStep:

The VisionSystemStep represents your hardware, and it holds the vision
program for one device. So only one VisionSystemStep can run on a
Device. A Job that contains multiple VisionSystem Steps is a Job that
contains the vision programs for multiple Visionscape Devices. Each
VisionSystemStep in your Job must be connected to a Device before it
can run, this is done by either downloading it to the device, or calling the
SelectSystem method (more on this in Chapter 3). When you build a Job
in FrontRunner, you are only allowed to build a Job for a single Device, so
these Jobs will only ever contain a single VisionSystem Step. Our I-PAK
product can create Jobs that contain multiple VisionSystemSteps, and
programmatically you can create a Job with multiple VisionSystemSteps.
The example Job tree above shows a VisionSystem Step attached to the
Device “GigEVision1”.

Inspection Step:

The Inspection Step contains all of the Steps that constitute an Inspection.
It is this Step that manages running all of the Steps in your vision
program. When you want to receive images and results from a running
device, it is the Inspection Steps that will produce these reports. Each
Inspection runs in a separate thread, independently from the others. The
VisionSystemStep must contain at least one Inspection Step, but it can
contain many.

Vision System Step

Job Step

Inspection Step
Snapshot Step

Acquire Step
Visionscape .NET Programmer’s Manual 2-3

Chapter 2 Jobs, Steps, and Datums
Snapshot Step:

The Snapshot Step handles image acquisition in your inspection. You will
generally insert one Snapshot Step for each camera you are using. You
insert all of your vision tools inside of the Snapshot Step, as this Step
produces an output buffer for your vision tools to run in. Although the
Snapshot Step handles image acquisition, the parameters that govern
image acquisition are not configured here, they are configured in the child
Acquire Step.

Acquire Step:

Every Snapshot Step has a child Acquire Step. You can not add or delete
this Step. The parameters that govern Image Acquisition are controlled
via the datums of the Acquire Step. The selected camera, the I/O point to
use as the Trigger, the image exposure time and many other parameters
are all controlled by the datums of this Step. If you need to modify these
parameters in your user interface, you will need to access the Acquire
Steps in your Job.

Visionscape.Steps and The Step Object

Accessing Jobs and Steps in your Visual Studio program requires you to
add a Reference to Visionscape.dll and Visionscape.Steps.dll. In your C#
or VB.NET project, you go to the Solution Explorer, right-click on
“References” in the project tree, and select “Add a Reference”. Under the
.Net tab in the “Add a Reference” dialog, select the following items:
Visionscape

Visionscape.Steps

To provide easy access to the objects within this namespace, add the
following statement to the top of your C# files (all sample code assumes
this using statement is present):
using Visionscape.Steps;
2-4 Visionscape .NET Programmer’s Manual

JobStep

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

Visionscape .NET Programmer’s Manual 2-5

JobStep

As we said above, the JobStep acts as the container for your vision
programs, so the JobStep object will be used to load and save Jobs from
disk. Here’s a C# example of how you would load the sample
“example_datamatrix.avp” file (installed with Visionscape) in your Form
Load event:
private JobStep m_Job = new JobStep();

private void frmMain_Load(object sender, EventArgs e)

{

 //load the job file

 m_Job.Load("C:\Vscape\tutorials and Samples\Sample
Jobs\Data Matrix\example_datamatrix.avp");

}

In this example, we simply called the Load method of JobStep, and
passed in the path to our AVP file. The AVP file is now loaded in memory,
contained within our JobStep variable, m_Job. Using methods and
properties of the JobStep object, we can access any of the Steps within
the loaded Job, and any of their Datums. The JobStep object is a
specialized form of the more generic Step object. To use Object Oriented
Programming terminology, you would say that JobStep is derived from the
Step Object. This means that the JobStep contains all of the methods and
properties of the Step object, but also adds a few of its own, like the Load
method shown in our example.

The Step Object
As we just described, the Step Object is the generic object (the base class
if you will) upon which all Steps are built. You should understand the
following key concepts about Steps.

Steps Are Collections
Each Step is also a collection that holds a list of the child steps that were
inserted inside of it when the Job was built. So, you can enumerate the
Steps of your Job just as you would the elements of any collection object.
Consider the example Job tree in Figure 2–2, and the parent-child
relationships of each step:

Chapter 2 Jobs, Steps, and Datums
FIGURE 2–2. A Job Tree is a Collection of Collections

So, let’s assume that the Job we loaded from disk matches the Job tree
shown in Figure 2–2. As you can see, the Job Step is always the top-most
Step in the tree. The Job will always contain one or more VisionSystem
steps in its collection. So, if we wanted to access the first VisionSystem
step in the Job, we could simply do the following:
//Get the first Vision System Step in the Job
VisionSystemStep vs = (VisionSystemStep)m_Job[1];//1-based
collection

And, if we wanted to iterate through all the VisionSystem steps, we could
do the following:
foreach(Step vs in m_Job)

{

 Console.WriteLine("The Name of this Step is " +
vs.Name);

}

Parent Step Child Count Child Steps in the
Collection

0740_01 1 Inspection:Insp1

Inspection 2 Snap1:Snapshot1
Snap2:Snapshot2

Snap1 1 OnePtLocator:O1PtLoc1

OnePtLocator 3 Fast Edge_Left:EdgeFast1
Fast Edge_Right:EdgeFast2
Pt to Line
Distance:Pt2LineDist

2-6 Visionscape .NET Programmer’s Manual

The Major Properties That Describe A Step

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

The Step Object Provides Many Properties That Describe
the Step

These include the Step’s Name, Symbolic Name, the type of Step (Blob,
Snapshot, Flaw, etc.), what category it falls under, is it trainable, is it
trained, etc. For more information, see “The Major Properties That
Describe A Step” on page 2-5 and “Step Object Properties” on page 2-35.

The Step Object Has Many Methods for Finding Child
Steps

It’s possible to find any step within a Job tree by simply using the
collection methods of the Step Object, but this can sometimes require a
fair amount of code. You may want to simply find all the Snapshots in your
Job, or find the first Step named “My Fast Edge Tool”. Fortunately, the
Step Object provides several flexible methods that locate Steps quickly.
We will cover these in more detail later in this chapter.

The Step Object can Add and Remove Steps From Your
Job

The Step Object provides methods that allow you to create new steps and
delete existing ones. It’s actually possible to create an entire Job from
code if you wish (though this is not generally recommended). Refer to
“Adding and Removing Steps” on page 2-10 for more information.

Every Step Contains a Collection of Datums

The Datums property of Step Object is a collection that contains a list of
all of the Datums for that Step. You can get and set the values of any Step
parameter via the Datum interface. More on that later. Now, let’s cover
each of these topics in more detail.

The Major Properties That Describe A Step

The Step Object has many properties and methods, but the following
properties are the most commonly used, and the ones that provide the
most valuable information to describe a Step.
Visionscape .NET Programmer’s Manual 2-7

Chapter 2 Jobs, Steps, and Datums
• Name — Holds the name the user assigned to the step. You can
change this name via code, or the user may change it while in
FrontRunner.

• NameSym — The symbolic name that Visionscape assigned to the
Step. This name is fixed and cannot be changed.

FIGURE 2–3. Name and Symbolic Name

• Trainable — Returns True if this Step is Trainable. Most Steps in
Visionscape do not need to be trained and will return False for this
property. Examples of Trainable steps are the Template Find Step,
the OCV tools, DMR and IntelliFind®.

• Trained — Returns True for steps that are Trainable and are currently
trained.

• Type — Returns a string that identifies the type of the Step. This will
always come in the format:

Step.<type>.1

Where “<type>” would be replaced by the actual type of the Step. Some
examples:
Snapshot Step = “Step.Snapshot.1”

Inspection Step = “Step.Inspection.1”

Fast Edge Step = “Step.Edgefast.1”

Refer to the StepBrowser.exe utility provided with Visionscape for a
complete list of all Step types. You can use this utility to verify that a Step
is of the proper type before you perform some specific operation. For
example, perhaps you are looping through all the children of an
Inspection step, looking for Snapshot Steps. You might write the following
code:
//find the first Inspection step under the Job

Step insp = m_Job.FindByType("Step.Inspection")
2-8 Visionscape .NET Programmer’s Manual

The Major Properties That Describe A Step

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

//loop through all the children of the inspection step

foreach (Step child in insp)

{ //is this a Snapshot Step?

 if (child.Type == "Step.Snapshot.1")

 {

 Console.WriteLine("Found a Snapshot named " +
child.Name);

 }

}

• Category — Returns a value of type EnumAvpStepCategory that
identifies the category of the step. The available categories are:

– PostProc — This stands for Post Processing Step, and most
Steps fall into this category. This means that the Step will run
AFTER the processing of its parent. In other words, the
Visionscape framework will run the parent first, then it will run this
step.

– PreProc — This stands for Pre Processing Step. A Step that is in
this category will be run by the Visionscape framework before its
parent step. An example of this would be the Acquire Step that is
built into the Snapshot Step. The TwoPt Locator Step built into the
OCV Fontless Step is another example. You may not delete Steps
in this category, it’s only deleted when its parent is deleted.

– Private — This is a Step that was created by its parent Step, and
is private to that Step. The owner of a Private Step is responsible
for running it. You are not permitted to delete the step. Examples
of this category are the AutoThreshold step in Blob, and the
OutputValid step in the Inspection step.

– Setup — A Step in this category was created by its Parent Step
for the sole purpose of being used at Setup time. This category of
Step does nothing at runtime. An example would be the Template
Setup Step, which is built into the Template Find and One Pt
Locator steps. This step provides you with an ROI to place
around the template you wish to train on, but provides no
functionality at runtime. This Step is only deleted when its parent
is deleted.
Visionscape .NET Programmer’s Manual 2-9

Chapter 2 Jobs, Steps, and Datums
2-10 Visionscape .NET Programmer’s Manual

– Part — This category designates Steps that are used for
Calibration. Currently, this applies only to the Blob step that is
added by the Calibration Manager when you attempt to Calibrate
your Job. You may not delete a Part Step.

Finding Steps in the Step Tree

Several methods are provided in the Step object to make locating
particular Steps or groups of Steps quick and easy.

Step FindBySymName(string name)

name: The symbolic name of the step you are searching for.

Calling this method causes the Step to search all of it’s children for the
child step with the given symbolic name. If successful, a reference to the
located Step is returned, if not successful, an exception is thrown.

Step mystep = m_Job.FindBySymName("Snapshot1");

Step FindByName(string name)

name: The user assigned name of the step you are searching for.

Calling this method causes the Step to search all of it’s children for the 1st
child step with the given user name. If successful, a reference to the
located Step is returned, if not successful, an exception is thrown.

Step mystep = m_Job.FindByName("My Snapshot");

Step FindByType(string type)

type: This string specifies the type of step to search for, in the form
“Step.type”.

• e.g. “Step.Snapshot”, “Step.Inspection”, “Step.EdgeFast” etc... The
StepBrowser utility can be used to look up the type of any Step.

Calling this method causes the Step to search all of it’s child steps for the
1st Step that matches the specified type. If successful, a reference to the
located Step is returned, if not successful, an exception is thrown.

Step snap = m_Job.FindByType("Step.Inspection");

Finding Steps in the Step Tree

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

Composite Find(string nameOrType, EnumAvpFindOption option,
EnumAvpStepCategory whichCategory)

– nameOrType — A string that specifies either the user name,
symbolic name or step type that you are searching for.

– option — Specifies how you want to search, your options are...

• FIND_BY_SYMNAME — Searches for the first Step with a
Symbolic name that matches the string specified in the
nameOrType parameter.

• FIND_BY_TYPE — Searches for the first Step that matches
the type specified in the nameOrType parameter.

• FIND_BY_USERNAME — Searches for the first Step with a
username that matches the string specified in the
nameOrType parameter.

– whichCategory — Use this parameter when you want to search
only for Steps within a given Step category. You will typically
specify S_ALL.

Calling this method causes the Step to search only its child Steps for the
first one that matches the search criteria. You can search for Steps by
user name, symbolic name or by step Type, as specified using the Option
parameter. You can also specify the Step category that you want
searched using the whichCategory parameter. If successful, a reference
to the located Step is returned. An exception is thrown if the Step cannot
be found.

Examples:

Step insp, onept, blob;
//find the first Inspection step under the Job
insp = (Step)m_Job.Find("Step.Inspection",
 EnumAvpFindOption.FIND_BY_TYPE,
 EnumAvpStepCategory.S_ALL);
//find Step named "OnePt Locator" under the inspection
onept = (Step)insp.Find("OnePt Locator",
 EnumAvpFindOption.FIND_BY_USERNAME,
 EnumAvpStepCategory.S_ALL);
//find step with Symbolic Name "Blob1" under locator
blob = (Step)onept.Find("Blob1",
EnumAvpFindOption.FIND_BY_SYMNAME,
Visionscape .NET Programmer’s Manual 2-11

Chapter 2 Jobs, Steps, and Datums
2-12 Visionscape .NET Programmer’s Manual

 EnumAvpStepCategory.S_ALL);

Note: You may notice that when searching for the first Inspection step, we
used the string “Step.Inspection” and not “Step.Inspection.1”. Either string
will work, all of the find methods are smart enough to recognize when the
“.1” is present or not.

StepList GetStepList(string type)

– type: A string that specifies the type of string to search for. This is
in the form “Step.type”.

• e.g. “Step.Snapshot”, “Step.Inspection”, “Step.EdgeFast”
etc... The StepBrowser utility can be used to look up the type
of any Step.

Searches the children of the Step for ALL steps that match the specified
type. A reference to a StepList object is returned that contains all
matches. Following is an example of finding all of the snapshot steps in a
Job:

StepList allSnaps = m_Job.GetStepList("Step.Snapshot");
foreach(Step snap in allSnaps)
{
 Console.WriteLine("Snapshot Name = " + snap.Name);
}

IAvpCollection FindByType(string stepType, int findInAllChildren)

– stepType — A string that specifies the type of string to search for.
This is in the form “Step.type”.

• e.g. “Step.Snapshot”, “Step.Inspection”, “Step.EdgeFast”
etc... The StepBrowser utility can be used to look up the type
of any Step.

• findInAllChildern – set to 1 to search ALL child steps, set to 0
to search immediate children only.

Finding Steps in the Step Tree

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

This version of FindByType is identical to GetStepList, the difference
being that you can use the findInAllChildren parameter to specify that only
immediate children should be searched, and not all levels of child Steps.
This version also returns a reference to an IAvpCollection interface rather
than a StepList. In general you should prefer GetStepList to this method.
Following is an example of using FindByType to find all of the snapshots
under a Job Step.

IAvpCollection snaps = m_Job.FindByType("Step.Snapshot", 1);
foreach (Step snap in snaps)
{
 Console.WriteLine("Snapshot Name = " + snap.Name);
}

Composite FindParent(string stepType)

– stepType — A string that specifies the type of Step you want to
search for. This is in the form “Step.type” where “type” is the type
of Step. You are not required to include the “.1” at the end of the
find string.

This method walks up through the Job tree, searching the parents of the
Step for the type specified in the stepType parameter. Typically, you would
use this method when you want to find the parent Snapshot or Inspection
of a given Step.

Examples:

//find the first fast edge step in the Job
Step fedge = m_Job.FindByType("Step.EdgeFast");
//find the parent Snapshot and Inspection steps of the
//FastEdge step
Step parentSnap = (Step)fedge.FindParent("Step.Snapshot");
Step parentInsp = (Step)
fedge.FindParent("Step.Inspection");

Composite ParentInspection { get; }

Composite ParentVisionSystem { get; }

Use these properties as a quick and easy way to access the parent
Inspection Step or parent Vision System Step of a given Step object.
Step insp = (Step)mystep.ParentInspection;
Step vs = (Step)mystep.ParentVisionSystem;
Visionscape .NET Programmer’s Manual 2-13

Chapter 2 Jobs, Steps, and Datums
2-14 Visionscape .NET Programmer’s Manual

Adding and Removing Steps

The Step object provides methods that allow you to add and remove
Steps (with some limitations) from its collection of child steps. You use
one of the versions of the AddStep method when you want to add a child
step.

Step AddStep(string type)

– type: The type of step that you wish to add. This is in the form
“Step.Type”

• e.g. “Step.Snapshot”, “Step.EdgeFast”, etc.

Adds a child step of the specified Step type to the calling Step’s list of
children. The new step will be added at the end of the child list. A
reference to the newly added step is returned. You should understand
that a Step can only add steps to it’s own list of children. So if you want to
add steps under one of the snapshot steps in your Job, then you must first
locate that Snapshot Step, and call AddStep on it. You can not use the
JobStep for instance to add steps to an Inspection Step. The following
example illustrates this as we create the basic framework of a Job.

m_Job = new JobStep();
//add a Vision System step to our Job
VisionSystemStep vs =
(VisionSystemStep)m_Job.AddStep("Step.VisionSystem");
//now add an Inspection under the Vision System Step
Step insp = vs.AddStep("Step.Inspection");
//lastly, add a snapshot under the inspection
Step snap = insp.AddStep("Step.Snapshot");

The resulting Job would look like this (NOTE: The Acquire step is added
automatically by the Snapshot Step):

Adding and Removing Steps

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

Step AddStep(string type, string name)

– type: The type of step that you wish to add. This is in the form
“Step.Type”

• e.g. “Step.Snapshot”, “Step.EdgeFast”, etc

– name: The name that should be assigned to the newly created
Step.

This version of AddStep allows you to specify the user name of the Step,
so the Steps can be created and named in one shot. Using our previous
example, we could assign our own names to each of the Steps like this:

m_Job = new JobStep();
//add a Vision System step to our Job
VisionSystemStep vs =
(VisionSystemStep)m_Job.AddStep("Step.VisionSystem",
 "Device1");
//now add an Inspection under the Vision System Step
Step insp = vs.AddStep("Step.Inspection", "Defect
Inspection");
//lastly, add a snapshot under the inspection
Step snap = insp.AddStep("Step.Snapshot", "Camera 1");

Now the resulting Step tree would look like this:

Step AddStepAfter(string type, Step relativeStep)

– type : The type of step that you wish to add. This is in the form
“Step.Type”

• e.g. “Step.Snapshot”, “Step.EdgeFast”, etc

– relativeStep: This is the child Step that the new step will be added
after.

Adds a new Step of the specified type into the calling Step’s child list, but
instead of being added at the end, the new step is added immediately
after the Step specified by the relativeStep parameter.
Visionscape .NET Programmer’s Manual 2-15

Chapter 2 Jobs, Steps, and Datums
Step AddStepBefore(string type, Step relativeStep)

– type: The type of step that you wish to add. This is in the form
“Step.Type”

• e.g. “Step.Snapshot”, “Step.EdgeFast”, etc

– relativeStep: This is the child Step that the new step will be added
before.

Adds a new Step of the specified type into the calling Step’s child list, but
instead of being added at the end, the new step is added immediately
before the Step specified by the relativeStep parameter.

Following are some additional examples of adding Steps to a Job.

Examples:

Assume we’ve loaded a Job that initially looks like this:

FIGURE 2–4. Initial Job

If we wanted to add a Flaw tool at the end of the Snapshot’s child list, we
could run the following code:

 //find the first snapshot step in the Job
 Step snap = m_Job.FindByType("Step.Snapshot");
 //add a new Flaw tool into the snapshot
 snap.AddStep("Step.FlawTool", "My New FlawTool");
2-16 Visionscape .NET Programmer’s Manual

Adding and Removing Steps

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

Now, the Step Tree would look like this:

FIGURE 2–5. Job with Flaw Tool Added

What if you wanted to add a new Blob tool under the Snapshot step, but
you wanted it to be inserted before the One Pt Locator? Then, we could
do the following:

 //find the first snapshot step in the Job
 Step snap = m_Job.FindByType("Step.Snapshot");
 //find the One Pt locator under the snapshot
 Step onept = snap.FindByName("OnePt Locator");
 //add a new blob step into the snapshot, before the one

//pt locator
 Step blob = snap.AddStepBefore("Step.Blob", onept);
 blob.Name = "My New Blob Tool";

New Step added at the
end of Snap1’s Child list
Visionscape .NET Programmer’s Manual 2-17

Chapter 2 Jobs, Steps, and Datums
Now, the Step Tree would look like this:

FIGURE 2–6. Job with Blob Tool Added

What if we wanted to add a new Fast Edge Step to the OnePt Locator
step, but we wanted it to come immediately after the Fast Edge_Right
Step? Then, we would do the following:

//find the 'Fast Edge_Right' step
Step fedge_right = onept.FindByName("Fast Edge_Right");
//add a new step into One Pt Locator,but After the Fast
Edge_Right step
Step fedge_new = onept.AddStepAfter("Step.EdgeFast",
fedge_right);
fedge_new.Name = "My New Fast Edge Step";

New Step added inside
Snap1 before the OnePt
Locator Step
2-18 Visionscape .NET Programmer’s Manual

Adding and Removing Steps

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

Now, the Step Tree would look like this:

FIGURE 2–7. Job with Fast Edge Added

Step AddStep(object stepOrType,
EnumAvpStepCategory whichCategory,
Step relative,
EAvpCAddOption option)

– stepOrType — A string that specifies the type of Step you want to
add. This is in the form “Step.type” where “type” is the type of
Step, like “Step.Blob”.

– whichCategory — Allows you to specify the category of the Step
you are adding. In general you should specify S_POSTPROC.
Refer to the description of the Category property for an
explanation of the various step categories.

– relative — If you want your new Step to be added into the tree
“relative” to some other Step, say just before or just after that
Step, then you must use this parameter to pass in a reference to
that “relative” Step. The value you specify in the option parameter
determines where it’s inserted relative to this Step. Set to null for
default behavior, which will insert the new Step at the end of the
child list.

– option — Specifies where in the tree the new Step should be
added. This parameter works together with the relative
parameter. The available settings are:

New Step added inside
OnePt Locator, immediately
after the Step named Fast
Edge_Right
Visionscape .NET Programmer’s Manual 2-19

Chapter 2 Jobs, Steps, and Datums
• ADD_AFTER — The new Step will be added immediately
after the Step specified in the relative parameter.

• ADD_BEFORE — The new Step will be added immediately
before the Step specified in the relative parameter.

This version of AddStep provides the most options, but is also the most
difficult to use. You would use this version when you want very precise
control over how your new step will be added. Most situations can be
handled with the previously documented versions of AddStep, but this
version is still supported if needed. A reference to the newly added Step is
returned if the function is successful. An exception will be thrown if
unsuccessful. All of the examples shown previously can be accomplished
with this version.

Step InsertStep(Step insStep)

– instep: The Step that is to be inserted into the child list.

This method can be used to insert an already existing Step into the calling
Step’s list of children. Assuming we had a VisionSystem Step variable
named ‘vs’, we could add an Inspection Step to it like this:

InspectionStep insp2 = new InspectionStep();
vs.InsertStep((Step)insp2);
This is equivalent to this:
vs.AddStep("Step.Inspection");

To remove a Step, you use either the Remove or RemoveStep methods.

void Remove(int Index)

– index — This is the 1 based index of the Step you wish to remove
from the Step’s collection.

Example:

Continuing the example code from above, if we wanted to remove the
Fast Edge Step we just added, we could simply do this:

onept.Remove(3); //remove the 3rd child step
2-20 Visionscape .NET Programmer’s Manual

Accessing a Step’s Datum Values

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

If we wanted to remove the Step named “Pt to Line Distance” from our
AddStep example, but didn’t know what its index was, we could locate it,
and then use its index property:

//Find the step named “Pt to Line Distance” (under onept)
Step ptlinedist = onept.FindByName("Pt to Line Distance");
//use the index from the step itself to remove it
onept.Remove(ptlinedist.Index);

void RemoveStep(int Index, int delChildStep)

– index — This is the 1 based index of the Step you wish to remove
from the Step’s collection.

– delChildStep —

• 1 — Remove the step from the collection AND delete it

• 0 — The Step is removed from the parent step’s collection
but is NOT deleted from memory.

The only difference between Remove and RemoveStep is the
delChildStep parameter of RemoveStep. This parameter allows you to
only remove a Step from it’s parent’s child list, without actually destroying
the object. Other than that they are functionally identical.

Accessing a Step’s Datum Values

Every Step contains a collection of Datum objects. There is one Datum
object for each of the Step’s parameters, both input and output. Figure
2–8 shows the Datums for the Blob tool.
Visionscape .NET Programmer’s Manual 2-21

Chapter 2 Jobs, Steps, and Datums
2-22 Visionscape .NET Programmer’s Manual

FIGURE 2–8. Blob Tool Datums

Accessing a Step’s Datum Values

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

You can access a Step’s Datums via the following properties and
methods:

Datum Datum(string datumSymName)

– datumSymName: A string that represents the symbolic name of
the Datum you want to access.

This method takes the symbolic name of the datum you want to access,
and it returns a reference to that Datum object if it is found. An exception
is thrown if not found. You would typically use this method when you want
to read or write the value of an individual Datum within a Step. You can
use the StepBrowser utility to look up the Symbolic Names of every
Datum for every Step. For more information, see “Using StepBrowser to
Look Up Symbolic Names” on page 2-30.

Example:

Continuing our AddStep example, we could take the newly added Blob
Step and find its AutoTheshold and High Threshold Datums. We can then
modify the values of each in order to turn the Auto Threshold capability
off, and then set our own High Threshold.

//add a new blob step into the snapshot, before the one pt
//locator
 Step blob = snap.AddStepBefore("Step.Blob", onept);
 blob.Name = "My New Blob Tool";
 //find the Autothreshold Datum
 Datum AutoThresh = blob.Datum("UseAutoThr");
 //find the High Threshold Datum
 Datum HiThr = blob.Datum("HiThr");
 //now turn off AutoThreshold, and set High Threshold
 AutoThresh.Value = false;
 HiThr.Value = 150;

IAvpCollection Datums { get; }

This property returns a reference to the Step’s collection of Datum
objects. You would use this property whenever you want to iterate through
all of a Step’s Datums.

Example:

 //iterate through all of the datums in our blob step
 foreach(Datum d in blob.Datums)
 {
Visionscape .NET Programmer’s Manual 2-23

Chapter 2 Jobs, Steps, and Datums
 Console.WriteLine("Datum Name = " + d.Name);
 Console.WriteLine("Datum Type = " + d.Type);
 }

IAvpCollection DatumList(EnumAvpDatumCategory cat)

Cat: Specifies a datum category. Available options are:

– D_INPUT: Return only input datums. These are Datums in which
you set a reference to another datum.

– D_OUTPUT: Return only output datums

– D_RESOURCE: Return only Resource datums. These are
Datums that have an editor and are directly modified by the user.

– D_ALL: Return all datums

This method allows you to specify a Datum category, and it will then only
return a collection of the Datums that are within that category. Typically
you would use this property when you wanted to analyze just a Step’s
Output or Input Datums.

Example:

IAvpCollection outs =
blob.DatumList(EnumAvpDatumCategory.D_OUTPUT);
foreach(Datum outDat in outs)
{
 Console.WriteLine("Datum Name = " + outDat.Name);
 Console.WriteLine("Datum Type = " + outDat.Type);
}

Modifying Datum Values

The Datum object has a value property that you use to both get and set its
value. The value property will return an object, as the Datum object needs
to wrap many different data types. Datums in Visionscape can hold
integers, floating point values, strings, single dimension arrays like points
(x,y, angle and scale), lines (a,b,c), and also two dimensional arrays like
Point Lists, Blob Trees, etc.
2-24 Visionscape .NET Programmer’s Manual

Modifying Datum Values

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

Example of getting a Blob tool’s High Threshold value:

//assume ‘blob’ is a reference to a blob step
//find the High Threshold Datum
Datum HiThrDatum = blob.Datum("HiThr");
//Get the high threshold value as an integer
int hiThresh = (int)HiThrDatum.Value;

Example of getting the ROI datum:

//get the blob's ROI datum
Datum ROI = blob.Datum("ROI");
//The ROI's value is an array of objects (doubles), verify
//this
if (ROI.Value.GetType().IsArray)
{ //Get the value of the ROI datum
 object[] roi = (object[])ROI.Value;
 //dump out the ROI’s center x, y, width, height, and

//angle
 Console.WriteLine("ROI Center X,Y: " + roi[0] + ", " +
roi[1]);
 Console.WriteLine("ROI Width, Height: " + roi[2] + ", " +
roi[3]);
 Console.WriteLine("ROI Angle: " + roi[4]);
}

Setting Datum values is just as easy. You simply assign your new value to
the value property.

Example of setting the Blob tool’s High Threshold value:

//find the High Threshold Datum
Datum HiThrDatum = blob.Datum("HiThr");
//set its value to 150
HiThrDatum.Value = 150;

Example of modifying the Blob tool’s ROI Position:

 //get the blob's ROI datum
 Datum ROI = blob.Datum("ROI");
 //get the current roi settings as an array
 object[] roi = (object[])ROI.Value;
 //move the roi left 20 pixels, and up 50 pixels
 roi[0] = (double)roi[0] + 20;
 roi[1] = (double) roi[1] - 50;
 //set the width and height to 80 x 200
 roi[2] = 80;
Visionscape .NET Programmer’s Manual 2-25

Chapter 2 Jobs, Steps, and Datums
 roi[3] = 200;
 //now set the modified array back into the datum
 ROI.Value = roi;

In the above example, we moved the Blob’s ROI 20 pixels to the right and
50 pixels up, and we set the width to 80 and the height to 200 pixels. The
easiest way to modify a Datum that takes an array is to get its current
value, modify it, and set it back into the value property. This insures that
the dimensions of your array will be correct.

As mentioned previously, the Datum object holds many different types of
data. You can check the type of any Datum object by querying the read-
only Type property. This returns a string with a similar format to the Step
Object’s Type property, in that it follows the format “Datum.Type.1”. The
following table lists the most common data types, and the corresponding
Datum type that is used to represent it.

TABLE 2–1. Common Datum Types

Data Type Corresponding Datum Type String

Angle Datum.Angle.1

Area Datum.Area.1

Boolean/Status Datum.Status.1

Distance (A Double that can be calibrated) Datum.Distance.1

Enumerated types (Datums displayed in a
Combo Box)

Datum.Enum.1

Floating Point Datum.Double.1

Integer Datum.Int.1

Line Datum.Line.1

Point Datum.Point.1

ROI (region of interest) Shape.Rect.1

String Datum.String.1
2-26 Visionscape .NET Programmer’s Manual

Modifying Datum Values

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

In Table 2–2, we list all available Datum Types. For each type, we specify
the format of the data returned by the value property, as well as the format
expected when you try to set the value property.

TABLE 2–2. Datum Types, Get Values, and Set Values

Datum Type Get Value Returns Set Value Takes

Datum.Angle double double or int

Datum.Area double double or int

Datum.Blob Variant array of requested
features for this blob. The
returned array is of size (x),
where x is the number of features
requested. This is based on the
value set in the “Calculations to
Perform” Datum in your Blob tool.
The possible values are:
Default - Xcent, Ycent, Area,
Color.
Basic - Default results plus
Angle,
Nholes, Xmin, YatXmin, Xmax,
YatXMax, YatYmin, Ymin,
XatYmax,
Ymax, Xdiff, Ydiff, Major, Minor,
Arearatio, Minora, Minorb,
Minorc,
Majora, Majorb, Majorc.
Area - Basic results plus Totarea,
Holearea, Holeratio, Boxarea,
Boxarearatio, Axratio.
All - Area results plus PEround,
Length,
Width, Lenratio, Avgrad, Rmin,
Rmax,
Radratio, Rminang, Rmaxang,
X3sign,
Y3sign, Perimeter, Ppda, Rminx,
Rminy,
Rmaxx, Rmaxy.

Set not supported
Visionscape .NET Programmer’s Manual 2-27

Chapter 2 Jobs, Steps, and Datums
Datum.BlobTree Object array of requested
features for a
specific blob or all blobs. The
returned
array is of size (n,x), where n is
the index
of the blob, and x is the index of
the
feature requested. Refer to
Datum.Blob
for definition of each possible
feature.

Set not supported

Datum.CalResult Double array of size (3, 16).
Contains both the forward and
inverse
linear transforms used for
calibration as
well as the calibration stats.
(0,0) = Angle of cal target
(0,1) (0,2) (0,3)
(1,1) (1,2) (1,3)
(2,1) (1,2) (2,3) = forward matrix
(0,4) (0,5) (0,6)
(1,4) (1,5) (1,6)
(2,4) (1,5) (2,6) = inverse matrix
(0,7) = Max Cal Residue
(0,8) = Avg Cal Residue
(0,9) = Pixels per unit X
(0,10) = Pixels per unit Y
(0,11) = Units per Pixel X
(0,12) = Units per Pixel Y
(0,13) = Camera angle
(0,14) = Pix perspective error
(0,15) = World perspective error

Double array of size (3,17).
Array contents are the same as
for Get
Value. The 17th element should
be set to
0.0.

TABLE 2–2. Datum Types, Get Values, and Set Values
2-28 Visionscape .NET Programmer’s Manual

Modifying Datum Values

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

Datum.CompList Array of handles and names for
all items
in the list. Each item could be a
Step or a
Datum. Array is (x,2), where x is
number
of entries in the list.
(x,0) = Handle to a Step. If the
item in the
list is a Step, the handle belongs
to the
Step. If the item is a Datum, the
handle is
to the owning Step of the datum.
(x,1) = Symbolic name of the Step
or
Datum.

(x,2) array where x is the number
of
entries in this list
(x,0) = Either the handle of the
item (Step
or Datum) or its complete
symbolic name
path (Step or Step.Datum) unique
to the
Datum.CompList search root (set
by the
owner of the datum)
(x,1) = True or False to Add or
Remove
the entry from the list.

Datum.DblDmList Array of double values Set not supported

Datum.DblList Array of double values Array of double values

Datum.Distance Double Double

TABLE 2–2. Datum Types, Get Values, and Set Values
Visionscape .NET Programmer’s Manual 2-29

Chapter 2 Jobs, Steps, and Datums
Datum.DMRResults Array sized (n, 38), where n is the
number of Matrices found + 1.
The first row of the array is
always
populated with text labels that
identify the
data in each column, the actual
matrix
data then follows in each
successive
row.
(n,0) = Decoded String
(n,1) = Decoded? (boolean)
(n,2) = Linked (boolean)
(n,3) = found symbol type (int)
(n,4) = num rows
(n,5) = num cols
(n,6) = ecc type
(n,7) = format ID
(n,8) = crc expected
(n,9) = crc actual
(n,10) = matrix angle
(n,11) = error code
(n,12) = total num linked
(n,13) = Linked Position
(n,14) = Pixels per Cell
(n,15) = Symbol Height
(n,16) = Symbol Width
(n,17) = X1
(n,18) = Y1
(n,19) = X2
(n,20) = Y2
(n,21) = X3
(n,22) = Y3
(n,23) = X4
(n,24) = Y4
(n,25) = Locate Time
(n,26) = Extent Time
(n,27) = Size Time
(n,28) = Warp Time

Set not supported

TABLE 2–2. Datum Types, Get Values, and Set Values
2-30 Visionscape .NET Programmer’s Manual

Modifying Datum Values

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

Visionscape .NET Programmer’s Manual 2-31

Datum.DMRResults
(cont.)

(n,29) = Sample Time
(n,30) = Decode Time
(n,31) = Contrast
(n,32) = Error Bits
(n,33) = Damage %
(n,34) = Border Match %
(n,35) = Threshold Value
(n,36) = Symbol Polarity
(n,37) = Img Style

Set not supported

Datum.Double Double Double, Integer

Datum.Enum Array containing the current
selection in
the first item (long) and the set of
available selections (string) in the
following items.
Example: The Acquire Step's
“CameraNumber” Datum, in
which
“Camera 2” was selected, would
return
an array that looks like this:
(0) = 1 '0 based index of cur sel
(1) = “Camera 1”
(2) = “Camera 2”
(3) = “Camera 3”
(4) = “Camera 4”

Integer value containing index of
current selection or the string
identifying
the new selection.
Example: To change the
CameraNumber
selection to Camera 3, you could
say:
.value = 2 'select 3rd item
OR
.value = “Camera 3”.

Datum.Expression Via the generic Datum interface,
the
Value property returns a Double
that
contains the last value of the
evaluated
expression.
In order to retrieve the expression
itself.
You must use the ExpressionDm:
Dim expr as ExpressionDm
Dim strExpr as string
'get Inspection Step's 'criteria for
inspection 'pass datum
Set expr =
insp.Datum(“PassCrit”)
strExpr = expr.Expression

String value that contains the new
expression.

TABLE 2–2. Datum Types, Get Values, and Set Values

Chapter 2 Jobs, Steps, and Datums
Datum.FileSpec String array containing a list of file
names, or if the list is < 1, a single
string

String value containing a file
name or
wildcard, or an array of strings
containing
files to add to the list. The
value(s) you
send are always added to the list,
they
do not replace the current list. To
clear
the list, pass an empty string ("").

Datum.FlexArray Array sized (x,4) where x is the
number
of datums stored in the FlexArray
plus 1.
(0,0) contains the number of
pages
stored for each datum. Each of
the
remaining rows correspond to
one
variable: (x,0) is the handle of the
datum,
(x,1) is the symbolic name, (x,2)
is the
user name, and (x,3) is the
category of
the datum (output or resource).

Array sized (x,2) where x is the
number
of datums stored in the FlexArray
plus 1.
(0,0) contains the number of
pages
stored for each datum. Each of
the
remaining rows correspond to
one
variable: (x,0) is the handle of the
datum
and (x,1) is a boolean indicating
Add or
Remove.

TABLE 2–2. Datum Types, Get Values, and Set Values
2-32 Visionscape .NET Programmer’s Manual

Modifying Datum Values

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

Datum.InspectionRe
sults

Array sized (x,3) where x is the
number
of ALL possible results, not just
those
selected for upload.
(x,0) = Handle of the Datum that
is
available for upload (not the Step)
(x,1) = Symbolic Name of the
datum.
(x,2) = True if the datum is to be
uploaded, False if not.
To determine which results are
selected
for upload, you must iterate
through the
array, checking for those entries
where
(x,2) = True.

Array sized (x,3). Where x is the
number
of results you are adding to the
upload
list. The contents are different
then for
Get:
(x,0) = Handle of the Step
(x,1) = Symbolic Name of the
Datum
(x,2) = True if you want to upload
this
datum, False if you are removing
it from
upload list.

Datum.Int Int Int

TABLE 2–2. Datum Types, Get Values, and Set Values
Visionscape .NET Programmer’s Manual 2-33

Chapter 2 Jobs, Steps, and Datums
Datum.IOList Integer, where upper word is the
IO Type,
Lower word is the 0 based IO
index.
Constants for the various IO
types are:
PHYSICAL = 1
VIRTUAL = 2
SENSOR = 3
STROBE = 4
ANALOGOUT = 5
SLAVESENSOR = 6
SERIAL TRIGGER = 11
Note: These values are also
represented
by the enumerated type
AvpIOType.

Two options:
1) Int, where upper word is IO
type, lower word is index.
NOTE: When setting a Serial
Trigger, you will also need to
specify the Trigger string. Use the
IoListDm object, and call
the SetTriggerString() method.
IOListDm trig =
(IOListDm)acqstep.Datum(
"Trigger");
//use Serial Trigger, 2nd
//Port
//type for serial trig =
//11,
//shift it to upper
//word
trig.Value = (11 << 16) |
1;
//Trigger when "123"
//received
trig.SetTriggerString("1
23");
2) String that lists type and index.
Supported only for sensor,
physical and
virtual IO. Format for each is:
“Trigger 1”
“Digital IO 3”
“Virtual IO 22”

TABLE 2–2. Datum Types, Get Values, and Set Values
2-34 Visionscape .NET Programmer’s Manual

Modifying Datum Values

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

Datum.LayoutInfo Array sized (x, 6) where x is the
number
of symbols in the layout, (x, 0) =
symbol
ID
(x, 1) = x location of the symbol
(x, 2) = y location of the symbol
(x, 3) = correlation score for the
symbol
that was calculated when the
layout was
trained
(x, 4) = width of the symbol in
pixels
(x, 5) = height of the symbol in
pixels.

Same format as Get Value. The
input
data replaces the current
LayoutData.

Datum.Line Array of Doubles containing
A,B,C.
This is from the line equation
Ax + By + C = 0

Array of Doubles containing
A,B,C.

Datum.Matrix Array of Doubles sized (x,y) Array of Doubles sized (x,y)

TABLE 2–2. Datum Types, Get Values, and Set Values
Visionscape .NET Programmer’s Manual 2-35

Chapter 2 Jobs, Steps, and Datums
Datum.OCVResults Array of inspection result data
sized (x,
18), where x is the number of
symbols in
the layout + 1. The first row of
data
contains text labels that identify
the
contents of each column. The
actual data
for each symbol starts in the 2nd
row:
(x, 0)-Passfail-Whether the
symbol
passed or failed the inspection
(x, 1)-X location
(x, 2)-Y location
(x, 3)-X offset from the trained
position
(x, 4)-Y offset from the trained
position
(x, 5)-Correlation score
(x, 6)-Sharpness value calculated
(x, 7)-Sharpness value as a
percentage
of the trained sharpness value
(x, 8)-Contrast value calculated
(x, 9)-Contrast value as a
percentage of
the trained contrast value
(x, 10)-Number of breaks found
(x, 11)-Initial residue value
(x, 12)-Initial residue value as a
percentage of the symbol's
trained area
(x, 13)-Final residue value
(x, 14)-Final residue value as a
percentage of the symbol's
trained area
(x, 15)-The area of the largest
blob found
in the residue image

Set not supported

TABLE 2–2. Datum Types, Get Values, and Set Values
2-36 Visionscape .NET Programmer’s Manual

Modifying Datum Values

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

Datum.OCVResults
(cont.)

(x, 16)-The area of the largest
blob as a
percentage of the symbol's
trained area
(x, 17)-The trained area

Set not supported

Datum.Point Array of four floats.
(0) = x
(1) = y
(2) = Angle in radians
(3) = scale
Note: Most tools will return data
for just
the X and Y values, and the angle
and
scale will default to 0 and 1
respectively.

Array of either 2 floats or 4 floats.
Specify
just X,Y if you want, or specify all
4
values. Format of the array
should be the
same as for Get Value.

Datum.PtList Array of double point values (x,2)
where
x is the number of points, (x,0) is
the
point-x value, and (x,1) is the
point-y
value.

Array of double point values (x,2)
where
x is the number of points, (x,0) is
the
point-x value, and (x,1) is the
point-y
value.

Datum.Rect Array of four Floats containing
left, top,
right, and bottom values.

Array of four
Floats/Double/Integer
values containing left, top, right,
and
bottom values.

Datum.Statistics Datum.Statistics Single
dimensional array with the
following members:
0 - Owner Step Status (pass/fail)
1 - Measured value
2 - Nominal value
3 - Minimum value
4 - Average value
5 - Maximum value
6 - Standard Deviation
7 - Count

Single dimensional array with the
following members:
0 - Owner Step Status (pass/fail)
1 - Measured value
2 - Nominal value
3 - Minimum value
4 - Average value
5 - Maximum value
6 - Standard Deviation
7 - Count

Datum.Status Boolean Boolean

Datum.Strelem Array of size (x,y) containing a set
of
Boolean values.

Array of size (x,y) containing a set
of Boolean values.

TABLE 2–2. Datum Types, Get Values, and Set Values
Visionscape .NET Programmer’s Manual 2-37

Chapter 2 Jobs, Steps, and Datums
Datum.String String String

Datum.Struct Array sized (x,2) where x is the
number
of datum elements in the struct.
(x,0) is
the error code associated with
datum x.
(x,1) contains the data from
datum x and
can be of any type.

Array sized (x,2) where x is the
number
of datums elements in the struct.
(x,0) is
the handle of the datum and (x,1)
is a
boolean indicating Add or
Remove.

Datum.VerifyResults A 1-dimensional array that
provides the result data for either
AIMDPM or ISO 15415
verification.

Set not supported

(0) = Verification type

(1) = Error code

(2) = Decoded string

(3) = Length of the decoded string

(4) = Symbology type

(5) = Aperture size

(6) = Damage percentage

(7) = Number of columns in the
symbol

(8) = Number of rows in the
symbol

(9) = Polarity

(10) = Overall grade

(11) = Reported grade

(12) = Calibration status

(13) = Cal target size 1

(14) = Cal target size 2

(15) = Cal target Rmin value

(16) = Cal target Rmax value

(17) = Error message

(18) = Mean light value

(19) = Process control on

(20) = Global range active for
process control parameters

TABLE 2–2. Datum Types, Get Values, and Set Values
2-38 Visionscape .NET Programmer’s Manual

Modifying Datum Values

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

Datum.VerifyResults
(cont.)

(21) = Global good grade Set not supported (cont.)

(22) = Global fair grade

(23) = Contrast parameter active
(process control)

(24) = Contrast grade

(25) = Contrast score

(26) = Contrast grade required for
“good” rating

(27) = Contrast grade required for
“fair” rating

(28) = Modulation parameter
active (process control)

(29) = Modulation grade

(30) = Modulation grade required
for “good” rating

(31) = Modulation grade required
for “fair” rating

(32) = Reflectance Margin active
(process control)

(33) = Reflectance Margin grade

(34) = Reflectance Margin grade
required for “good”

(35) = Reflectance Margin grade
require for “fair”

(36) = Fixed Pattern Damage
active (process control)

(37) = Fixed Pattern Damager
grade

(38) = Fixed Pattern Damage
grade required for “good”

(39) = Fixed Pattern Damage
grade required for “fair”

(40) = Axial NonUniformity active
(process control)

(41) = Axial NonU grade

(42) = Axial NonU score

(43) = Axial NonU grade required
for “good”

TABLE 2–2. Datum Types, Get Values, and Set Values
Visionscape .NET Programmer’s Manual 2-39

Chapter 2 Jobs, Steps, and Datums
Datum.VerifyResults
(cont.)

(44) = Axial NonU grade required
for “fair”

Set not supported (cont.)

(45) = Grid NonUniformity active
(process control)

(46) = Grid NonU grade

(47) = Grid NonU score

(48) = Grid NonU grade required
for “good”

(49) = Grid NonU grade required
for “fair”

(50) = Unused Error Correction
active (process control)

(51) = Unused Error Correction
grade

(52) = Unused Error Correction
score

(53) = Unused Error Correction
grade required for “good”

(54) = Unused Error Correction
grade required for “fair”

(55) = Minimum Reflectance
active (process control)

(56) = Min Reflectance grade

(57) = Min Reflectance score

(58) = Min Reflectance grade
required for “good”

(59) = Min Reflectance grade
required for “fair”

(60) = Print Growth active
(process control)

(61) = Print Growth grade

(62) = Print Growth X

(63) = Print Growth Y

(64) = Print Growth grade
required for “good”

(65) = Print Growth grade require
for “fair”

(66) = Edge Determination active
(process control)

(67) = Edge Determination grade

TABLE 2–2. Datum Types, Get Values, and Set Values
2-40 Visionscape .NET Programmer’s Manual

Modifying Datum Values

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

Datum.VerifyResults
(cont.)

(68) = Edge Determination score Set not supported (cont.)

(69) = Quiet Zone active (process
control)

(70) = Quiet Zone grade

(71) = Quiet Zone score

(72) = Quiet Zone grade required
for “good”

(73) = Quiet Zone grade required
for “fair”

(74) = Good Status (true if symbol
was rated “good”)

(75) = Fair Status (true if symbol
was rated “fair”)

(76) = Poor Status (true is symbol
was rated “poor”)

(77) = Decodability active
(process control)

(78) = Decodability grade

(79) = Decodability grade
required for “good”

(80) = Decodability grade
required for “fair”

(81) = Units

(82) = Cell size

(83) = Max exposure time used
for calibration

(84) = Global range active for
process control parameters

(85) = Global good grade

(86) = Global fair grade

(87) = Contrast parameter active
(process control)

(88) = Contrast grade

(89) = Contrast score

(90) = Contrast grade required for
“good” rating

TABLE 2–2. Datum Types, Get Values, and Set Values
Visionscape .NET Programmer’s Manual 2-41

Chapter 2 Jobs, Steps, and Datums
Datum.VerifyResults
(cont.)

(91) = Contrast grade required for
“fair” rating

Set not supported (cont.)

(92) = Modulation parameter
active (process control)

(93) = Modulation grade

(94) = Modulation grade required
for “good” rating

(95) = Modulation grade required
for “fair” rating

(96) = Reflectance Margin active
(process control)

(97) = Reflectance Margin grade

(98) = Reflectance Margin grade
required for “good”

(99) = Reflectance Margin grade
require for “fair”

(100) = Fixed Pattern Damage
active (process control)

(101) = Fixed Pattern Damager
grade

(102) = Fixed Pattern Damage
grade required for “good”

(103) = Fixed Pattern Damage
grade required for “fair”

(104) = Axial NonUniformity
active (process control)

(105) = Axial NonU grade

(106) = Axial NonU score

(107) = Axial NonU grade
required for “good”

(108) = Axial NonU grade
required for “fair”

(109) = Grid NonUniformity active
(process control)

(110) = Grid NonU grade

(111) = Grid NonU score

(112) = Grid NonU grade required
for “good”

TABLE 2–2. Datum Types, Get Values, and Set Values
2-42 Visionscape .NET Programmer’s Manual

Modifying Datum Values

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

Datum.VerifyResults
(cont.)

(113) = Grid NonU grade required
for “fair”

Set not supported (cont.)

(114) = Unused Error Correction
active (process control)

(115) = Unused Error Correction
grade

(116) = Unused Error Correction
score

(117) = Unused Error Correction
grade required for “good”

(118) = Unused Error Correction
grade required for “fair”

(119) = Minimum Reflectance
active (process control)

(120) = Min Reflectance grade

(121) = Min Reflectance score

(122) = Min Reflectance grade
required for “good”

(123) = Min Reflectance grade
required for “fair”

(124) = Print Growth active
(process control)

(125) = Print Growth grade

(126) = Print Growth X

(127) = Print Growth Y

(128) = Print Growth grade
required for “good”

(129) = Print Growth grade
require for “fair”

(130) = Edge Determination
active (process control)

(131) = Edge Determination
grade

(132) = Edge Determination
score

(133) = Quiet Zone active
(process control)

(134) = Quiet Zone grade

(135) = Quiet Zone score

TABLE 2–2. Datum Types, Get Values, and Set Values
Visionscape .NET Programmer’s Manual 2-43

Chapter 2 Jobs, Steps, and Datums
Datum.VerifyResults
(cont.)

(136) = Quiet Zone grade
required for “good”

Set not supported (cont.)

(137) = Quiet Zone grade
required for “fair”

(138) = Good Status (true if
symbol was rated “good”)

(139) = Fair Status (true if symbol
was rated “fair”)

(140) = Poor Status (true is
symbol was rated “poor”)

(141) = Decodability active
(process control)

(142) = Decodability grade

(143) = Decodability grade
required for “good”

(144) = Decodability grade
required for “fair”

(145) = Units

(146) = Cell size

(147) = Max exposure time used
for calibration

Datum.Verify1D
ResultsDm

A 1-Dimensional array that
provides the result data for
ISO15416 verification (1D
symbols):

Set not supported

(0) = Verification type

(1) = Error code

(2) = Decoded string

(3) = Length of the decoded string

(4) = Symbology type

(5) = Aperture size

(6) = Damage percentage

(7) = Polarity

(8) = Overall grade

(9) = Reported grade

(10) = Err message

(11) = X Dimension

TABLE 2–2. Datum Types, Get Values, and Set Values
2-44 Visionscape .NET Programmer’s Manual

Modifying Datum Values

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

Datum.Verify1D
ResultsDm (cont.)

(12) = Global threshold Set not supported (cont.)

(13) = Decode Grade

(14) = Decodability Grade

(15) = Edge Determination Grade

(16) = Symbol Contrast Grade

(17) = Minimum Reflectance
Grade

(18) = Minimum Edge Contrast
Grade

(19) = Modulation Grade

(20) = Defects Grade

(21) = Quiet Zone Grade

(22) = Calibration status

(23) = Cal target size 1

(24) = Cal target size 2

(25) = Cal target Rmin value

(26) = Cal target Rmax value

(27) = Cal Max exposure

(28) = Process control on

(29) = Global range active for
process control parameters

(30) = Global good grade

(31) = Global fair grade

(32) = Edge Determination active
(process control)

(33) = Edge Determ grade
required for “good” rating

(34) = Edge Determ grade
required for “fair” rating

(35) = Decode active (process
control)

(36) = Decode grade required for
“good” rating

(37) = Decode grade required for
“fair” rating

TABLE 2–2. Datum Types, Get Values, and Set Values
Visionscape .NET Programmer’s Manual 2-45

Chapter 2 Jobs, Steps, and Datums
Datum.Verify1D
ResultsDm (cont.)

(38) = Symbol Contrast
parameter active (process
control)

Set not supported (cont.)

(39) = Sym Contrast grade
required for “good” rating

(40) = Sym Contrast grade
required for “fair” rating

(41) = Minimum Reflectance
active (process control)

(42) = Min Reflectance grade
required for “good”

(43) = Min Reflectance grade
required for “fair”

(44) = Min Edge Contrast active
(process control)

(45) = Min Edge Con grade
required for “good”

(46) = Min Edge Con grade
required for “fair”

(47) = Modulation parameter
active (process control)

(48) = Modulation grade required
for “good” rating

(49) = Modulation grade required
for “fair” rating

(50) = Defects active (process
control)

(51) = Defects grade required for
“good”

(52) = Defects grade require for
“fair”

(53) = Decodability active
(process control)

(54) = Decodability grade
required for “good”

(55) = Decodability grade
required for “fair"

(56) = Quiet Zone active (process
control)

TABLE 2–2. Datum Types, Get Values, and Set Values
2-46 Visionscape .NET Programmer’s Manual

Modifying Datum Values

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

Datum.Verify1D
ResultsDm (cont.)

(57) = Quiet Zone grade required
for “good”

Set not supported (cont.)

(58) = Quiet Zone grade required
for “fair”

(59) = Good Status (true if symbol
was rated “good”)

(60) = Fair Status (true if symbol
was rated “fair”)

(61) = Poor Status (true is symbol
was rated “poor”)

(62) = Units

(63) = Bar Width

Datum.Verify1D
ScanResultsDm

A 2-Dimensional array that
provides the grades and scores
for each of the 10 scans
performed by ISO15416 symbol
verification.
Size of array is (10,19). Where n
= scan index:

Set not supported

(n,0) = Final Grade for scan

(n,1) = Edge Determination
Grade for this scan

(n,2) = Decode grade for this
scan

(n,3) = Symbol Contrast grade

(n,4) = Modulation grade

(n,5) = Minimum Edge Contrast
grade

(n,6) = Minimum Reflectance
grade

(n,7) = Defects grade

(n,8) = Decodability grade

(n,9) = Quiet Zone grade

(n,10) = Symbol Contrast score

(n,11) = Modulation score

(n,12) = Min Edge Contrast score

(n,13) = Min reflectance min
score

TABLE 2–2. Datum Types, Get Values, and Set Values
Visionscape .NET Programmer’s Manual 2-47

Chapter 2 Jobs, Steps, and Datums
Datum.Verify1D
ScanResultsDm
(cont.)

(n,14) = Min reflectance max
score

Set not supported (cont.)

(n,15) = Defects score

(n,16) = Decodability score

(n,17) = Quiet Zone 1 score

(n,18) = Quiet Zone 2 score

Shape.Rect (ROI) Object Array of 13 items
(0) = center X
(1) = center Y
(2) = width
(3) = height
(4) = angle (in radians)
(5) = Pt1 X (top-left pt)
(6) = Pt1 Y (top-left pt)
(7) = Pt2 X (top-right)
(8) = Pt2 Y (top-right)
(9) = Pt3 X (bottom-right)
(10) = Pt3 Y (bottom-right)
(11) = Pt4 X (bottom-left)
(12) = Pt4 Y (bottom-left)
Note: 5-12 are expressed as
offsets from
the ROI's anchor point.

Object Array of 5 OR 13 items
Array elements are the same as
those listed to the left.
You can pass a 5 element array if
you just want to modify the
location, width, height and angle.
The full 13 element array is only
required in the rare instances
when you want to modify the
control points as well.
Although index 4 in the array
takes an Angle, many Steps in
Visionscape cannot be rotated.
So, those Steps will
ignore any angle you pass in.

Shape.Rhombus Array of (4,2) double values
containing
the four points that describe the
rhombus. (x,0) is the point-x and
(x,1) is
the point-y.

Array of (4,2) double values
containing
the four points that describe the
rhombus. (x,0) is the point-x and
(x,1) is
the point-y.

TABLE 2–2. Datum Types, Get Values, and Set Values
2-48 Visionscape .NET Programmer’s Manual

Using StepBrowser to Look Up Symbolic Names

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

Using StepBrowser to Look Up Symbolic Names

The StepBrowser utility is very useful for looking up information on the
various Steps available in Visionscape. Specifically, it allows you to select
any type of step from a drop-down list, and then all relevant programming
information for that Step is displayed in the window. Specifically, it
displays the strings that represent its Step.type and symbolic name, and
most importantly, a list of all of its Datums. The Datum list includes the
standard name, symbolic name and datum type of each. StepBrowser
can be found in Start > Programs > Microscan Visionscape > Tools > Step
Browser.

Once launched, StepBrowser looks like this:

FIGURE 2–9. StepBrowser

Using the combo box at the top left of the window, you can select any type
of Visionscape Step. In the example in Figure 2–9, we've selected the
Fast Edge Step. Once selected, StepBrowser shows you the default user
name, the symbolic name, and the type in the first row of the grid for the
selected Step. All subsequent rows contain a list of every Datum for the
selected Step. This list also provides the default user name, symbolic
name and Datum Type for each. This information is very useful when you
are writing code to find and/or modify the values of many different Datums
in many different Steps.
Visionscape .NET Programmer’s Manual 2-49

Chapter 2 Jobs, Steps, and Datums
The JobStep Object

The JobStep derives from the Step object, and therefore it contains all of
its properties and methods. However, it provides many additional
capabilities as well, which we wil cover in this section. As our previous
examples have already demonstrated, the JobStep loads an AVPfile, or
“Job” from disk. The JobStep can also save the Job after you have
modified it, and it also provides some useful utility functions:

void Load(string fileName)

– filename — A string that specifies the path to the AVP file you
wish to load. All of the VisionSystemSteps in the specified AVP
will be added to this JobStep. So, if you already have an AVP file
loaded, and you now want to replace that AVP with a new one,
you must remember to delete all the existing VisionSystemSteps
in your Job (using the Remove method) before calling Load.

 //loop until the Job Step has no children
 while(m_Job.Count > 0)
 {
 m_Job.Remove(1);
 }
 //now we can load our new job
 m_Job.Load(strAvpPath);

InspectionStep LoadInspection(VisionSystemStep pSystem,
string fileName, InspectionStep replaceObj)

– pSystem — The VisionSystemStep into which the Inspection
should be loaded

– filename — The file path to the InspectionStep AVP file.

– replaceObj — A reference to an existing InspectionStep that
should be replaced by this inspection. Set to null if you want the
Inspection to be added to the VisionSystemStep.

Loads an InspectionStep AVP file into the given VisionSystemStep. This
is an AVP that contains an Inspection Step as it’s root step, meaning there
is no VisionSystem step in the file. You can specify an existing
InspectionStep that you want to replace with the newly loaded
InspectionStep. This method returns a reference to the newly loaded
InspectionStep.
2-50 Visionscape .NET Programmer’s Manual

The JobStep Object

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

void SaveAll(string fileName)

Saves the entire contents of the Job Step to disk. If your Job contains
multiple Vision System Steps, they will all be saved in one file. The Job is
saved to the file path specified by the filename parameter.

void SaveSystem(string fileName, VisionSystemStep whichSystem)

Saves only the specified Vision System Step to the file specified by
fileName.

void SaveInspection(InspectionStep pInsp, string fileName)

Saves only the specified InspectionStep to the file specified by filename.

bool SelectSystem(Visionscape.Devices.VsDevice dev)

Connects the first VisionSystem Step in the Job to the specified Device.
Refer to the VisionSystemStep documentation for more information on
SelectSystem.

bool SelectSystem(string sysName)

Connects the first VisionSystemStep in the Job to the device with the
name specified by the sysName parameter.

VisionSystemStep VisionSystemStep()

This method will return the first VisionSystemStep in the Job. This allows
you to write code that is more easly read.

This:

VisionSystemStep vs = m_Job.VisionSystemStep();

Rather than this:

VisionSystemStep vs = (VisionSystemStep) m_Job[1];

VisionSystemStep VisionSystemStep(int index)
Visionscape .NET Programmer’s Manual 2-51

Chapter 2 Jobs, Steps, and Datums
This overloaded version of the VisionSystemStep method takes a 0 based
index that specifies the exact VisionSystemStep that you want. Returns
null if the index is out of range.

object AVPFileInfoGet(string fileName)

Pass this function the name of an AVP file, and it will read the header of
that file, and return you an 8 element object array with the following
information:

The first 2 elements provide information on the version of Visionscape
that this AVP was saved under. Typically, a Visionscape version would be
presented as such:

 4.1.1 build 34.

AvpInfo(0) = Integer.
Upper word = minor version number (2 in example)
Lower word = build number (34 in example above)

AvpInfo (1) = Integer.
Upper word = Major version number (3 in example)
Lower word = middle version number (7 in example)

AvpInfo (2) = Integer. Total objects contained in the file.

AvpInfo (3) = Integer. Total size of the file.

AvpInfo (4) = Integer. Total number of Steps in the Job.

AvpInfo (5) = Integer. Total Step size

AvpInfo (6) = String. Identifies the AVP type. There are 3 possible values.

– “SYSTEMSTEP” File contains just one VisionSystem Step

– “JOBSTEP” File contains multiple VisionSystem Steps

– “INSPSTEP” File contains a single Inspection Step

AvpInfo (7) = Integer. Digitizer type.

EnumPCPriority PCPriorityRuntime { set; get; }

This utility function provides an easy way to modify the process priority of
your user interface. Options are:
2-52 Visionscape .NET Programmer’s Manual

The VisionSystemStep Object

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

– PP_CLASS_NORMAL Normal Process Priority

– PP_CLASS_HIGH High Process Priority

– PP_CLASS_REALTIME Realtime Process Priority (Default)

When you are running with Visionscape Host based System, you should
always run your process at Realtime in order to prevent timing spikes. If,
however, you are not concerned about timing spikes, and you would
rather not run your user interface as a Realtime process, then use this
property to lower the process priority to either High or Normal.

IComposite HandleToComposite(int hnd)

Converts a Datum handle or Step handle into an actual Datum object or
Step object. The function returns a reference to a Composite object,
which is the base class for both Step and Datum objects. Typically, the
Legacy Setup Manager, Job Manager and Runtime Manager controls
deal with Step and Datum handles, rather than actual Step and Datum
objects. This very useful utility function can be used to convert those
handles into actual objects when needed.

The VisionSystemStep Object

Just as the JobStep provides custom functionality on top of the standard
Step properties and methods, so, too, does the VisionSystemStep object.
Therefore, you should declare a variable of type VisionSystemStep when
trying to access one:

VisionSystemStep vs = m_Job.VisionSystemStep();
Visionscape .NET Programmer’s Manual 2-53

Chapter 2 Jobs, Steps, and Datums
FIGURE 2–10. VisionSystemStep

The VisionSystemStep represents your Visionscape hardware. When you
load a Job into your JobStep, the immediate children of the JobStep will
always be VisionSystemSteps. A Job constructed in FrontRunner will
always contain one and only one VisionSystemStep. A Job constructed in
I-PAK, or from code,could, however, contain more than one. After loading
a Job, it’s not ready to run until all of the VisionSystemSteps have been
connected to a Visionscape Device (refer to “Visionscape Devices” on
page 1-3 for more information on Devices). The VisionSystemStep
provides special methods to connect to a Visionscape Device, and to
query the current and past Device connection names. A list of these
methods follows.

int SelectSystem(string systemName)

– systemName — A string that specifies the name of the
Visionscape device that this VisionSystemStep should run on.

Refer to “Connecting Jobs to Visionscape Devices” on page 3-6 for
examples of how to use the SelectSystem method. In general, you are
better off using the Download method of the VsDevice object to connect
your hardware, as this works for all devices. However, when using
Visionscape Host based Systems, you may call SelectSystem directly if
you wish.

string SelectedVisionSystem { get; }

VisionSystem Step
2-54 Visionscape .NET Programmer’s Manual

Step Object Properties

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

This property allows you to query the name of the system/device that the
VisionSystemStep is currently connected to.

string SystemLastSavedAs { get; }

This read-only property returns the name of the Device that was selected
the last time this Job was saved. Typically, you would use this property to
tell your application which Device it should connect to after you have
loaded a Job from disk, since it’s likely that your Job will always run on the
same Device.

Step Object Properties

This section documents all of the properties of the Step Object.

BufferDm BufferInput { get; }

Read-only. Returns the input buffer Datum (if any) in the form of a
BufferDm object.

BufferDm BufferOutput { get; }

Read-only. Returns the output buffer Datum (if any) in the form of a
BufferDm object.

int CanRunUntrained { get; }

Read-only. Returns True if the Step can run untrained. For example, the
Data Matrix step is a trainable step, but it can run untrained.

EnumAvpStepCategory Category { get; }

Read-only. Returns the category of this Step in relation to its Parent.
Possible values are:

– S_POSTPROC— This stands for Post Processing Step, and
most Steps fall into this category. This means that the Step will
run AFTER the processing of its parent. In other words, the
Visionscape framework will run the parent first, then it will run this
step.

– S_PREPROC— This stands for Pre Processing Step. A Step that
is in this category will be run by the Visionscape framework
Visionscape .NET Programmer’s Manual 2-55

Chapter 2 Jobs, Steps, and Datums
before its parent step. An example of this would be the Acquire
Step that is built into the Snapshot Step. The TwoPt Locator Step
built into the OCV Fontless Step is another example. You may not
delete Steps in this category, it’s only deleted when its parent is
deleted.

– S_PRIVATE— This is a Step that was created by its parent Step,
and is private to that Step. The owner of a Private Step is
responsible for running it. You are not permitted to delete the
step. Examples of this category are the AutoThreshold step in
Blob, and the OutputValid step in the Inspection step.

– S_SETUP— A Step in this category was created by its Parent
Step for the sole purpose of being used at Setup time. This
category of Step does nothing at runtime. An example would be
the Template Setup Step, which is built into the Template Find
and One Pt Locator steps. This step provides you with an ROI to
place around the template you wish to train on, but provides no
functionality at runtime. This Step is only deleted when its parent
is deleted.

– S_PART— This category designates Steps that are used for
Calibration. Currently, this applies only to the Blob step that is
added by the Calibration Manager when you attempt to Calibrate
your Job. You may not delete a Part Step.

string Cookie { set; get; }

Allows you to attach custom string data to a Step. This data is not saved
with the Step when you save your Job to disk. Use the Tag property if you
need your string to be saved to disk.

int Count { get; }

Returns the number of child steps under this step.

Datum Datum(string datumSymName)

Read-only. Returns the Datum with the specified symbolic name. An
exception will be thrown if the name is invalid.

IAvpCollection DatumList(EnumAvpDatumCategory cat)

Read-only. Returns the list of Datums for this Step for a specific category.
2-56 Visionscape .NET Programmer’s Manual

Step Object Properties

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

IAvpCollection Datums { get; }

Read-only. Returns the list of all Datums for this Step. Refer to “Accessing
a Step’s Datum Values” on page 2-15 for more information on the Datum,
DatumList and Datums properties.

EnumEditabilityFlags Editability { set; get; }

Returns/sets the Editability Flags. You can combine the available options
to get/set how the Step is handled in the Setup environment. This
property is available for both the Step and Datum objects. Not all of the
available flags apply to the Step object; the following are the only ones
that do:

– EF_CANMASK — Step can be masked

– EF_CANROTATE — Step is rotatable

int Handle { get; }

Read-only. Returns the Handle of the Step. This is important when
dealing with legacy controls (Runtime Manager, Setup Manager…) that
work with Step handles, rather than references to Step objects.

IComposite HardwareDatum { get; }

Read-only. Returns the VisionDescDm from the parent
VisionSystemStep. This datum contains information about the currently
selected hardware.

int Index { get; }

Read-only. Returns the index of this Step in the collection of its Parent.

int LastError { get; }

Read-only. Returns the error code from the last time the Step ran. This will
be 0 when there is no error.

string Name { set; get; }

Returns/sets the Name of the Step. This is also referred to as the user
name, as the user is free to change this name at will.
Visionscape .NET Programmer’s Manual 2-57

Chapter 2 Jobs, Steps, and Datums
string NameSym { get; }

Read-only. Returns the symbolic name of this Step. This name is
assigned by the Visionscape Framework when the Step is created, and it
will never change.

IStep Next { get; }

Read-only. Returns the next sibling in the currently selected Step
category.

IComposite Parent { get; }

Read-only. Returns the Parent of this Step. Returns a Composite, but
understand that this can be assigned to a Step object, as Composite is
the base class of the Step and Datum classes.

IComposite ParentInspection { get; }

Read-only. Returns the parent Inspection Step of this Step.

IComposite ParentVisionSystem { get; }

Read-only. Returns the parent VisionSystem Step of this Step.

IStep Prev { get; }

Read-only. Returns the previous sibling in the current Step category.

int Rotatable { get; }

Read-only. Returns True if this Step can be rotated.

string Tag { set; get; }

Returns/sets custom string data for this Step. Similar to the Cookie
property, only this data will be saved to disk with the Step when you save
your Job.

int Trainable { get; }

Read-only. Returns True if the Step is trainable.

int Trained { get; }

Read-only. Returns True if the Step has been trained.
2-58 Visionscape .NET Programmer’s Manual

Step Object Methods

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

string TrainInfo { get; }

Read-only. Gets train information for this step.

string Type { get; }

Read-only. Returns the Type of Step. This will be in the form
“Step.type.1”.

Examples:

– Inspection step — “Step.Inspection.1”

– Snapshot step — “Step.Snapshot.1”

– Fast Edge Step — “Step.Edgefast.1”

int Untrainable { get; }

Read-only. Returns True if the Step is untrainable.

Step Object Methods

This section documents all of the methods of the Step Object:

Step AddStep(string type)
Step AddStep(string type, string name)
Step AddStep(object stepOrType,

EnumAvpStepCategory whichCategory,
Step relative,
EAvpCAddOption option)

Adds a Step of the specified type to the calling Step’s child list. A
reference to the newly added Step is returned.

Step AddStepBefore(string type, Step relativeStep)

Adds a Step of the specified type to the calling Step’s child list, but adds it
BEFORE the step specified by relativeStep. The relativeStep parameter
must be a child of the calling Step. Refer to “Adding and Removing Steps”
on page 2-10 for a more detailed description.

Step AddStepAfter(string type, Step relativeStep)
Visionscape .NET Programmer’s Manual 2-59

Chapter 2 Jobs, Steps, and Datums
Adds a Step of the specified type to the calling Step’s child list, but adds it
immediately AFTER the step specified by relativeStep. The relativeStep
parameter must be a child of the calling Step. Refer to “Adding and
Removing Steps” on page 2-10 for a more detailed description

void ApplyChanges(bool doingPaste)

Call to apply the set of changed data to the Step. When you are modifying
a Step’s Datum values from code, it’s a good idea to call this method after
you are done. This method tells the Step that it should update it's internal
data accordingly.

int CanBeContainedBy(IStep thisStep)

Returns True if the calling Step can be contained by the Step specified by
the thisStep parameter.

int CanContain(IStep thisStep)

Returns True if the calling Step can contain the Step specified by the
thisStep parameter.

int ChildCount(EnumAvpStepCategory Category)

Returns count of children in a specific category.

Step FindBySymName(string name)

Finds the first child Step with the specified symbolic name. Throws an
exception if the Step does not exist. Please refer to “Finding Steps in the
Step Tree” on page 2-8 for a more detailed description.

Step FindByName(string name)

Finds the first child Step with the specified user name. Throws an
exception if the Step does not exist. Please refer to “Finding Steps in the
Step Tree” on page 2-8 for a more detailed description.

Step FindByType(string type)

Finds the first child Step of the specified type. Type is in the form
“Step.Inspection”. Returns a reference to the Step if found, throws an
exception if not found. Please refer to “Finding Steps in the Step Tree” on
page 2-8 for a more detailed description.
2-60 Visionscape .NET Programmer’s Manual

Step Object Methods

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

IAvpCollection FindByType(string stepType, int findInAllChildren)

Returns an AvpCollection of all children that match the given type. Can
choose to search all child steps or only immediate children using the
findInAllChildren parameter. Refer to “Finding Steps in the Step Tree” on
page 2-8 for a more detailed description.

Composite FindParent(string stepType)

Finds the Parent Step that matches the specified type. The stepType
parameter is in the form “Step.Type”. Please refer to “Finding Steps in the
Step Tree” on page 2-8 for a more detailed description.

Composite Find(string nameOrType, EnumAvpFindOption option,
EnumAvpStepCategory whichCategory)

Finds the first child Step that matches the specified criteria. You can
choose to search for child Steps based on their symbolic name, user
name or type. Can also select the specific Step category to search. Refer
to “Finding Steps in the Step Tree” on page 2-8 for a more detailed
description

IStep FirstChild(EnumAvpStepCategory Category)

Returns first child Step in the specified category.

StepList GetStepList(string type)

Returns a list of all child Steps that are of the specified type. Prefer this
method over the FindByType method.

IAvpCollection GetChildList(EnumAvpStepCategory cat)

Creates an AvpCollection of child Steps that are in the specified category.

int IsTimingEnabled()

Returns True if timing is enabled.

void Remove(int Index)

Removes the child Step at the specified index from the calling Step’s
collection. The removed Step is always deleted. Please refer to “Adding
and Removing Steps” on page 2-10 for more information.

void RemoveStep(int Index, int delChildStep)
Visionscape .NET Programmer’s Manual 2-61

Chapter 2 Jobs, Steps, and Datums
Removes a Step from the set of children, optionally delete it. Refer to
“Adding and Removing Steps” on page 2-10 for more information.

int RunWithPreRun(IDatum pChangedDatum)

When calling this method the Step will first run it’s PreRun function (it’s
initialization routine), then it’s UIAction function (where it responds to
changes to specific Datum values), and then Runs the step. This function
returns true if the Step executed successfully (not necessarily passed).
Typically, you would call this method when you have changed a datum
value, and then want to run the Step to see the effect. Pass in a reference
to the modified datum, or pass in null if you simply want to run the Step.

int TagForUpload(string datumName, int bAdd)

Either adds or removes the specified datum to/from the parent
Inspection’s “Results to Upload” list. If bAdd = 1, the Datum is added to
the list, if bAdd = 0, the datum is removed from the list.

int Train()

Trains the step, returns True if passed.

void UIAction_Apply(IDatum pChangedDatum)

Sends UIAction 'Apply' notification to the step for the given datum. If you
are changing Datums in code, it is good practice to call this method
because the Step may perform special initialization based on the value of
the Datum you are modifying.

int Untrain()

Untrains the Step.

Datum Object Properties

This section documents all of the properties of the Datum Object:

EnumAvpDatumCategory Category { get; }
2-62 Visionscape .NET Programmer’s Manual

Datum Object Properties

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

Read-only. Returns the category of this Datum. Typically, this is used to
check whether a datum is an output an input or a resource datum.
Categories are defined by the EnumAvpDatumCategory constants.

– D_All — Signifies all datum types.

– D_INPUT — An input datum that references another datum.

– D_OUTPUT — Indicates an output datum.

– D_PRIVATE — Indicates a private datum.

– D_RESOURCE — An input datum that requires user input to provide
the value.

string Cookie { set; get; }

Allows you to store custom string data in this datum. This data will NOT
be saved to disk. Use the Tag property if you want to save custom data
along with the datum or Step.

EnumEditabilityFlags Editability { set; get; }

You will query the bits of this property to determine the editability settings
for the datum. The values defined by EnumEditabilityFlags indicate the
meaning of each bit. The following options are available for datums:

– EF_ALWAYSUPLOAD — When set, this datum’s value will always be
included in the list of uploaded results.

– EF_CAN_MODIFY_AT_RUNTIME — When set, this flag indicates that
this datum can be modified at runtime. YOU SHOULD NEVER CHANGE
THE STATE OF THIS FLAG.

– EF_ASK_MODIFY_AT_RUNTIME — When set, this flag indicates that
the datum will ask its parent if its OK to modify its value at runtime. YOU
SHOULD NEVER CHANGE THE STATE OF THIS FLAG.

– EF_CANMOVE

– EF_CANROTATE

– EF_CANSCALE
Visionscape .NET Programmer’s Manual 2-63

Chapter 2 Jobs, Steps, and Datums
– EF_CANSIZE

– EF_CANSTRETCH

These options all apply to shapes only (e.g. the ROI), and indicate
whether the shape can be moved, rotated, scaled, sized or stretched.
YOU SHOULD NEVER CHANGE THE STATE OF THIS FLAG.

– EF_ENABLEREFEDIT — Indicates that this datum uses a reference
editor, and that it’s enabled.

– EF_NOUSERUPLOAD — When set, indicates that the user cannot
select this datum for upload, but it WILL be included automatically in the
list of uploaded results.

– EF_REFDATUM — Indicates that this datum can be set to reference
other datums.

int Handle { get; }

Read-only. Returns the Handle of the Datum.

int IsReference { get; }

Read-only. Returns True if the Datum is referencing another Datum.

int LastError { get; }

Read-only. Returns the error code from the last time the parent step ran.

string Name { set; get; }

Returns/sets the Name of this object.

string NameSym { get; }

Read-only. Returns the symbolic name of this object.

int NumScalars { get; }

Read-only. If Datum holds array data, returns size of array. Returns 1 for
simple types(int, double, string, etc.).

IComposite Owner { get; }
2-64 Visionscape .NET Programmer’s Manual

Datum Object Properties

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

Read-only. Returns the owner of this object.

IComposite Parent { get; }

Read-only. Returns the Parent of this object.

IComposite ParentInspection { get; }

Read-only. Returns the parent Inspection Step.

IComposite ParentVisionSystem { get; }

Read-only. Returns the parent VisionSystemStep.

Datum ReferenceGet()

Valid for INPUT datums only, returns the Datum that is referenced by this
Datum.

void ReferenceSet(IDatum refDatum)

Valid for INPUT Datums only, causes this Datum to point to, or reference,
the Datum specified by the refDatum parameter.

int TaggedForUpload { get; }

Returns True if this Datum is tagged for upload.

string Type { get; }

Read-only. Returns the Type of this Datum. For example, an integer
Datum would return the string “Datum.Int.1”, a Distance Datum would
return the string “Datum.Distance.1”.

object Value { set; get; }

Gets/Sets the value of this datum. Refer to “Modifying Datum Values” on
page 2-18 for a detailed description.

string ValueAsString { set; get; }

Allows you to get/set the value of the datum as a string. Some of the
complex datum types do not implement this property and may return an
empty string.

object ValueCalibrated { set; get; }
Visionscape .NET Programmer’s Manual 2-65

Chapter 2 Jobs, Steps, and Datums
Use this property when you want to retrieve a Datum’s value in calibrated
units. The Job must have been calibrated first in order for this to have any
effect. If the Job has not been calibrated, then this property returns the
same data as the Value property.

EnumVisiblityFlags Visibility { set; get; }

Returns/sets Visibility Flags. Use this datum to hide/show datums. There
are several valid options defined by the EnumVisibilityFlags type, but the
only ones that really matter are those that follow:

– VF_NEVER — The datum is not visible. This means that the datum will
not show up in the Datum page of the Setup Manager, or in the Datum
Grid control. When applied to ROIs, this means that the ROI will not show
up in the buffer and, therefore, cannot be moved by the user.

– VF_ALWAYS — The datum is always visible.

– VF_ADVANCED — The datum is advanced, and will only be shown in
the DatumGrid control if the “Advanced” button on the toolbar is pressed.

int Visible { set; get; }

Allows easy manipulation of the Visibility flag when you simply want to
show or hide a Datum. Set to 0 to hide a Datum, 1 to show it. Returns 0 if
the Datum is not visible, non 0 if it is Visible.

Datum Object Methods

This section documents all of the methods of the Datum Object:

IComposite FindParent(string stepType)

Finds the Parent Step that matches the specified type. The stepType
parameter is in the form “Step.Type”. Please refer to “Finding Steps in the
Step Tree” on page 2-8 for a more detailed description.

void Regen(int bDoPicture)

Regenerates the datum, and optionally takes a picture while doing so.
“Regenerate” means to PreRun and then Run every Step that this Datum
2-66 Visionscape .NET Programmer’s Manual

Datum Object Methods

Jo
b

s,
 S

te
p

s,
 a

n
d

D

at
u

m
s

2

is dependent upon. For example, a Point to Line Distance Step is
dependent upon the Steps that provide the input point and input line, so
those Steps would also be PreRun and Run.

int TagForUpload(int bAdd)

If bAdd is true, this Datum is added to the parent Inspection Step’s list of
Result to Upload. If bAdd is false, it is removed.
Visionscape .NET Programmer’s Manual 2-67

Chapter 2 Jobs, Steps, and Datums
Step Handles: Converting to Step Objects

A Step Handle is a long integer that represents the address in memory (a
pointer) of an underlying Step object that the Visionscape framework
knows how to deal with. Several of the legacy Visionscape components
deal primarily with Step Handles, rather than with Step Objects. Those
components are the Runtime Manager, the original Setup Manager, Job
Manager and Datum Manager. Each of these components have
properties and methods that take Step Handles as inputs, and that will
also return Step Handles to you. This leads to two questions:

• How do I pass a step handle to a method or property?

The Step Object provides a Handle property, so simply reference this
property whenever you need to pass a Step Handle.

• How do I work with a step handle that is returned to me by a property
or method?

The Visionscape.Steps namespace provides the StepHelper static class
that can be used to convert Step Handles to Step Objects. In the following
example, we demonstrate how the step handle returned by the original
Setup Manager's GetCurrentStep function could be converted to a Step
Object using the StepHelper.StepFromHandle() method:

//this legacy Setup manager function returns a step handle
int hStep = ctlSetup.GetCurrentStep();
if(hStep != 0)
{
//convert the handle to a Step Object using the StepHelper class
Step myStep = StepHelper.StepFromHandle(hStep);
Console.WriteLine("Selected Step is " + myStep.Name);
}

2-68 Visionscape .NET Programmer’s Manual

3

Ta
lk

in
g

 to
 V

is
io

n
sc

ap
e

H
ar

d
w

ar
e

3

CHAPTER 3 Talking to Visionscape
Hardware: VsCoordinator
and VsDevice

Introduction to the Visionscape.Devices Namespace

In this chapter, we will talk about the objects provided by the
Visionscape.Devices namespace. You will use these objects to query
your PC and/or your network for Visionscape Devices.

Assembly Names: Visionscape.dll & Visionscape.Devices.dll

Namespace:Visionscape.Devices

To access this namespace, add the following .NET references to your
project:

Visionscape
Visionscape.Devices

Add the following statement to the top of your C# files in order to make
access to this namespace easier:

using Visionscape.Devices;

The two most important objects in this namespace are VsCoordinator,
and VsDevice.
Visionscape .NET Programmer’s Manual 3-1

Chapter 3 Talking to Visionscape Hardware: VsCoordinator and VsDevice
VsCoordinator

The primary purpose of the VsCoordinator object is to discover the
Visionscape hardware that is available to your PC, and to collect that
hardware into “Devices”. As we explained in Chapter 1, a “Device”
represents a single smart camera or a collection of GigE cameras.
VsCoordinator will discover all available smart cameras on your network,
and create a VsDevice object to represent each. It will also discover all
available GigE cameras and (by default) create one VsDevice object to
talk to all of them. The discovered Devices are maintained in a list, and
you will need to access this list in your code whenever you wish to
communicate with a particular device. Access is provided via the Devices
property, which is a collection of VsDevice objects.

You should also understand that VsCoordinator is a “Singleton” object,
which means that there will only ever be one instance of it in a given
process (EXE), regardless of how many times you instantiate the object in
your project. For example, if you create instances of the VsCoordinator
object in two different forms, both will actually be referencing the same
instance of the object.

VsDevice

The VsDevice object is a programmer’s interface to any Visionscape
device. Its API includes methods to start, stop, upload, download, take
control, query status, and configure a device. It also contains properties
that describe the device, such as the device type (GigE device, smart
camera, etc), the digitizer type, etc. Therefore, the VsDevice object is
central to writing your own Visionscape UI.

VsCoordinator and Device Discovery

When you instantiate a VsCoordinator object for the first time, it will
immediately begin trying to detect what Visionscape Devices are present
in your PC and on your network. This includes any Software Systems that
you may have created. Because smart cameras and GigE cameras live
on the network, they can not be instantly discovered, it may take from 2 to
10 seconds for all of your Devices to be discovered. Shortly we will
discuss how to wait for Device discovery when your application starts up.
As devices are discovered, GigE and Software Systems will always be
3-2 Visionscape .NET Programmer’s Manual

VsCoordinator and Device Discovery

Ta
lk

in
g

 to
 V

is
io

n
sc

ap
e

H
ar

d
w

ar
e

3

added to the Devices collection first, and smart cameras will always be
added at the end of the list. The following example illustrates iterating
through the VsCoordinator’s Devices collection, and outputing the name
of each Device to the output window:

VsCoordinator coord = new VsCoordinator();
foreach (VsDevice dev in coord.Devices)
{
 Console.WriteLine(dev.Name);
}

To find a particular device in the list by name, you can use the
FindDeviceByName method. For example, the first GigE system
discovered in your PC will always be assigned the name “GigeVision1”,
so you can find this device with the following code:

VsCoordinator coord = new VsCoordinator();
VsDevice gigeDev = coord.FindDeviceByName("GigeVision1");

Note: To see the names of the GigE systems and Software Systems in
your PC, double-click on the Visionscape Backplane icon in the Windows
System Tray.

This will open the AvpBackplane window, which will provide you with a list
of all available GigE and Software Systems. But NOT smart cameras. To
see a list of all discovered smart cameras, use the Visionscape Network
Browser utility.

How Devices are Discovered
As mentioned previously, GigE cameras live on a network, and must be
discovered before they can be accessed. The first time you instantiate
your VsCoordinator object, it will in turn cause the Visionscape Backplane
process to be started. You can see that the Visionscape Backplane has
been started by looking for its icon in the Windows System Tray:
Visionscape .NET Programmer’s Manual 3-3

Chapter 3 Talking to Visionscape Hardware: VsCoordinator and VsDevice
When the Visionscape Backplane process first starts it will try to detect
what devices are present. This is handled as follows:

GigE Systems:

A command is sent out across your network connection asking all GigE
cameras to announce themselves. If any GigE cameras are present, they
will respond to this request. When the Visionscape Backplane process
receives a response, it knows that it has GigE cameras, and will therefore
go ahead and create a GigE System that will own each GigE camera.
This system will be added to the front of the Devices Collection.

Software Systems:

Software Systems are not added to the Devices Collection until after the
GigE System(s) have all been discovered. Software systems are always
added after GigE systems, but before smart cameras.

Smart Cameras:

Cameras periodically announce their presence on the network. This is
accomplished by broadcasting a short network message approximately
every five seconds. This message is sent using UDP, which is a network
protocol similar to TCP but much lighter weight and without the extensive
error checking. The Visionscape Backplane process discovers smart
cameras by listening for these UDP packets. When ever a UDP packet
arrives from a smart camera, it checks to see if it is already in its list of
Devices, and if not, it is added. So a smart camera could be discovered
immediately, or it could take up to 10 seconds, it depends on when that
first UDP packet arrives.

If you have previously instantiated a VsCoordinator in your application,
then it’s very likely that all Visionscape Devices will have already been
discovered, meaning you won’t have to wait for device discovery every
time you create a VsCoordinator. If the Visionscape Backplane process is
already running before you launch your application, then you also will not
have to wait for Devices to be discovered:
3-4 Visionscape .NET Programmer’s Manual

Connecting Jobs to Visionscape Devices

Ta
lk

in
g

 to
 V

is
io

n
sc

ap
e

H
ar

d
w

ar
e

3

Waiting for Device Discovery by Using “Device Focus”

So as we just discussed, when your application first starts, there may be a
delay before all devices have been discovered and placed in the Devices
collection of VsCoordinator. This means that your application will need to
wait for its chosen Device to be discovered before it tries to access it. This
is done by using the DeviceFocusSetOnDiscovery method of
VsCoordinator. You simply pass in the name of the device you are looking
for, and then the OnDeviceFocus event will be fired when that device is
discovered. The following example demonstrates how we would wait for
the discovery of the smart camera named “MyHawkEye_1600T”:

VsCoordinator m_coord;
private void frmMain_Load(object sender, EventArgs e)
{
m_coord = new VsCoordinator();
//wire up our event handler to the OnDeviceFocus event
m_coord.OnDeviceFocus += OnDeviceFocusEventHandler;
//tell coordinator to fire the OnDeviceFocus event when
//the device MyHawkEye_1600T is discovered
m_coord.DeviceFocusSetOnDiscovery("MyHawkEye_1600T", -1);
}
private void OnDeviceFocusEventHandler(VsDevice objDevice)
{
 Console.WriteLine("Our Device has been Discovered and is
Ready to use");

//Continue your UI initialization here…
}

So as you can see, when our application starts up, we call the
DeviceFocusSetOnDiscovery method in the Form_Load event, and then
we wait for the OnDeviceFocus event to be fired. When
OnDeviceFocusEventHandler is called, we know that the device
“MyHawkEye_1600T” has been discovered and is ready to use. At that
point, you would continue with whatever application initialization you need
to perform, such as downloading a job, establishing report connections,
etc.

Connecting Jobs to Visionscape Devices

At this point, you should understand that the VsDevice object represents
a Vision System, which is one piece of, or a collection of, Visionscape
Visionscape .NET Programmer’s Manual 3-5

Chapter 3 Talking to Visionscape Hardware: VsCoordinator and VsDevice
Hardware. You should also recognize that the VsCoordinator is intended
to provide you with a list of all available VsDevices as soon as they have
been discovered. In the previous chapter, we explained Jobs and Steps,
and how to load AVP files from disk. Once a Job is loaded however, it can
not function until it has been connected to a Device. In the following
example, we demonstrate how to use the SelectSystem method of
VisionSystemStep to connect the VisionSystem Step to the first GigE
Device in the PC.

private JobStep _job = new JobStep();
private VsDevice _device;
private VsCoordinator _coordinator;
private void frmMain_Load(object sender, EventArgs e)
{
 //instantiate our coordinator object
 _coordinator = new VsCoordinator();
 //wire up our event handler to the OnDeviceFocus event
 _coordinator.OnDeviceFocus += OnDeviceFocusEventHandler;
 //tell coordinator to fire the OnDeviceFocus event when
 //the device GigEVision1 is discovered
 _coordinator.DeviceFocusSetOnDiscovery("GigEVision1", -1);
}
//This event will be received when GigEVision1 has been
//discovered
private void OnDeviceFocusEventHandler(VsDevice objDevice)
{
 _device = objDevice;
 //Load our job
 _job.Load("C:\Vscape\Jobs_GigETest.avp");
 //Get the first VisionSystemStep
 VisionSystemStep vs = _job.VisionSystemStep();
 //Connect the VisionSystemStep to our device
 vs.SelectSystem(_device.Name);
 //Now we can run the inspections
 _device.StartAll();
}
//when running on PC based Devices,
//you must stop all inspections before exiting
private void frmMain_FormClosing(object sender,
FormClosingEventArgs e)
{
 _device.StopAll();
}

3-6 Visionscape .NET Programmer’s Manual

Connecting Jobs to Visionscape Devices

Ta
lk

in
g

 to
 V

is
io

n
sc

ap
e

H
ar

d
w

ar
e

3

The previous example instructs the VsCoordinator to call our
OnDeviceFocusEventHandler() function when the Device named
“GigEVision1” is discovered. Once the Device is discovered, we load a
Job from disk, connect the VisionSystemStep to the Device, and start all
of the inspections running. We also make sure to call the Devices’ StopAll
method in the Form_Unload event to stop all inspections before the
application exits. This is important when running with Host based
Systems. A “Host based System” is one in which your PC acts as the
primary vision processor, such as with GigE and Software Systems, and
previously our framegrabber boards. On a Host based System, your
application may crash if it attempts to shut down while inspections are still
running. You do not need to worry about stopping inspections on exit
when dealing with smart cameras. So, the previous example works well
for Host based Systems.

But what about smart cameras? For these devices, it’s not enough to
simply select the hardware; you must also download your Job to the
Device. In that case, the following code could be used. Assume we want
to load a Job onto a smart camera named “MyHawkEye_1600T”.

private JobStep m_Job = new JobStep();
private VsDevice m_dev;
private VsCoordinator m_coord;
//The Load event of our main form
private void frmMain_Load(object sender, EventArgs e)
{
 m_coord = new VsCoordinator();
 //wire up our event handler to the OnDeviceFocus event
 m_coord.OnDeviceFocus += OnDeviceFocusEventHandler;
 //tell coordinator to fire the OnDeviceFocus event when
 //the device MyHawkEye_1600T is discovered
 m_coord.DeviceFocusSetOnDiscovery("MyHawkEye_1600T", -1);
}

//This event handler will be called when our device is discovered
private void OnDeviceFocusEventHandler(VsDevice objDevice)
{
 //We've discovered our Device....
 m_dev = objDevice;
 //So load the job file
 m_Job.Load("C:\Vscape\Jobs\SampleJob.avp");
 try
 { //download our job to the device, wait until it's done
 TransferStatus stat = m_dev.Download(m_Job, true);
Visionscape .NET Programmer’s Manual 3-7

Chapter 3 Talking to Visionscape Hardware: VsCoordinator and VsDevice
 //check status of the download
 if(stat == TransferStatus.TransferOK)
 { //download was successful, so start the inspections
 m_dev.StartAll();
 }
 }
 catch (Exception e)
 {
 Console.WriteLine("Download Failed for the following
Reason: " + e.Message);
 }
}

So in this example we waited for our smart camera to be discovered, and
when it was, we loaded a Job, and then called the VsDevice.Download()
method, passing in the Job step, and specifying ‘true’ for the bWait
parameter, which means don’t return until the download is complete. Next
we simply check the return value to see if the download was successful,
and if so, we start all inspections running on the device. We also added a
try{} catch{} block to handle any exceptions thrown during the download.
This is a simple and straightforward approach to downloading jobs to a
smart camera.

So in looking at our previous two examples, we have lead you to believe
that you’ll need to run the first example when using a Host based
Systems, and the second example when using smart cameras. However,
this is not true, the second example works for all devices, including GigE
and Software Systems. Although nothing needs to actually be
downloaded to a Host based System (since the job is running locally on
the PC), this call:

dev.Download(m_job, true);

is functionally equivalent to this call when using Host based Systems:

vs.SelectSystem dev.Name

In other words, the Download method will call the SelectSystem method
for you. Thus, if you are trying to write a generic UI that will work with all
Visionscape Devices, we recommend that you use the call to Download
rather than SelectSystem.

One last point, you must remember that you need to stop all inspections
from running when you exit your application if you are running on a Host
System.
3-8 Visionscape .NET Programmer’s Manual

Connecting Jobs to Visionscape Devices

Ta
lk

in
g

 to
 V

is
io

n
sc

ap
e

H
ar

d
w

ar
e

3

The previous examples showed, with a small amount of code, how to get
a Visionscape Job loaded to a particular Device and running. We haven’t
showed you how to view the images and results yet, that's coming in the
next chapter. But, how about an even easier way to get a Job loaded and
running? Consider this modification to our previous example:

private VsDevice m_dev;
private VsCoordinator m_coord;
//The Load event of our main form
private void frmMain_Load(object sender, EventArgs e)
{
 m_coord = new VsCoordinator();
 //wire up our event handler to the OnDeviceFocus event
 m_coord.OnDeviceFocus += OnDeviceFocusEventHandler;
 //tell coordinator to fire the OnDeviceFocus event when
 // the device MyHawkEye_1600T is discovered
 m_coord.DeviceFocusSetOnDiscovery("MyHawkEye_1600T", -
1);
}
//This event handler will be called when our device is
discovered
private void OnDeviceFocusEventHandler(VsDevice objDevice)
{
 //We've discovered our Device....
 m_dev = objDevice;
 try
 { //Load the AVP and download it in one step, wait
until its done
 TransferStatus stat =
 m_dev.DownloadAVP("C:\Vscape\Jobs\SampleJob.avp",
true);
 //check status of the download
 if(stat == TransferStatus.TransferOK)
 { //download was successful, so start the
inspections
 m_dev.StartAll();
 }
 }
 catch (Exception e)
 {
 Console.WriteLine("Download Failed for the following
Reason: " + e.Message);
 }
}

Visionscape .NET Programmer’s Manual 3-9

Chapter 3 Talking to Visionscape Hardware: VsCoordinator and VsDevice
In this example, we eliminated the JobStep, and used the VsDevice
object's DownloadAVP method to directly load and then download our
AVP file in one shot. This method works with all Visionscape Devices. If
the goal of your UI is to simply load an AVP from disk and get it running,
the above sample is the simplest way to do it. If your goal is to write a
more complex UI that provides the user with access to the Steps and
Datums of the AVP, or if you need to scan the Steps of the Job to gather
information about it before you start running, then you will need to load
the Job into a JobStep first, as demonstrated in our previous example.
The choice is yours.
3-10 Visionscape .NET Programmer’s Manual

Connecting Jobs to Visionscape Devices

Ta
lk

in
g

 to
 V

is
io

n
sc

ap
e

H
ar

d
w

ar
e

3

What Else Can I Do With Device Objects?

Table 3–1 Acts as a quick reference of example code for common
situations. For important additional details, please refer to the detailed
documentation later on in this chapter.

TABLE 3–1. How Do I...

How do I... Example

Enumerate Devices 1. Declare and create a VsCoordinator
VsCoordinator coord = new VsCoordinator();
2. Iterate over the Devices collection
VsCoordinator coord = new VsCoordinator();
foreach (VsDevice dev in coord.Devices)
{
 Console.WriteLine(dev.Name);
}

Discover a smart camera
when my application first
starts

1. Declare member variables for VsCoordinator and VsDevice:
private VsCoordinator m_coord = new
VsCoordinator();
private VsDevice m_dev;
2. In your Form_Load event, connect an event handler to the
OnDeviceFocus event, and call the
DeviceFocusSetOnDiscovery method, passing in the name of
your smart camera:
m_coord.OnDeviceFocus += OnDeviceFocusHandler;
m_coord.DeviceFocusSetOnDiscovery("MyCam",-1);
3. Handle the OnDeviceFocus event, and add your
initialization code to the event handler
private void OnDeviceFocusEvent(
VsDevice objDevice)
{

//finish initializing your app here…
}

Take Control of a Device 1. Call the TakeControl method of VsDevice:
bool InControl = m_dev.TakeControl("UserID","Pwd");
2. Check the return value to see if it succeeded
if(InControl)
{
 //safe to download, start, stop, etc.
}

Start/Stop Inspections dev.StartAll();//Starts all inspections
dev.StartInspection(0);//starts 1st inspection
//start 2nd insp, run for 3 cycles
Visionscape .NET Programmer’s Manual 3-11

Chapter 3 Talking to Visionscape Hardware: VsCoordinator and VsDevice
Download an AVP file dev.StartInspection(1, 3);
dev.StopAll();//stop all inspections
dev.StopInspection(0); //stop inspection 1

TABLE 3–1. How Do I...
3-12 Visionscape .NET Programmer’s Manual

Connecting Jobs to Visionscape Devices

Ta
lk

in
g

 to
 V

is
io

n
sc

ap
e

H
ar

d
w

ar
e

3

Download a Job Step that
is already loaded

1. Get a VsDevice reference for the Visionscape
Device you wish to download to.
2. Use the DownloadAVP method of VsDevice
TransferStatus stat =
m_dev.DownloadAVP("SampleJob.avp", false);
3. Check the transfer status in a loop while
calling DoEvents to allow other UI events to
continue while waiting for the download to finish
while(m_dev.CheckXferStatus(20) ==
 tagXFERSTATUS.XFER_IN_PROGRESS)
{
 Application.DoEvents();
}
4. Step 3 can be skipped by passing ‘true’ as the 2nd
parameter of Download. For more information about
downloading a Job, see “Downloading a Job” on page 3-14

Get information on the
running Job

1. Tell Device to update its Namespace information
by calling QueryNamespace.
m_dev.QueryNamespace();
2. Access the NameSpace property, which holds
a VsNameNode object with child VsNameNode
objects arranged in a tree structure that is identical
to the Loaded Job.
VsNameNode nnJob = m_dev.Namespace;

Getting information on a
Device's IO capabilities

1. Tell device to update its IO information by calling
the QueryIOCaps method.
m_dev.QueryIOCaps();
2. Access the IOCaps property. This is a VsIOCaps object,
the properties of which describe the IO capabilities of the
device.
VsIOCaps iocaps = m_dev.IOCaps;
Console.WriteLine("Num Physcial IO Pts: " +
iocaps.CountPhysical);

TABLE 3–1. How Do I...
Visionscape .NET Programmer’s Manual 3-13

Chapter 3 Talking to Visionscape Hardware: VsCoordinator and VsDevice
A Detailed Look at VsDevice

VsDevice is the primary interface when communicating to any
Visionscape device. The primary feature of this object is to provide a
common programming interface, regardless of whether the target device
is a smart camera, a GigE System, a vision board, or software emulated.
You should never create a “new” VsDevice object; instead, you should
retrieve a reference to a VsDevice through one of the VsCoordinator
methods as described previously. Following is a more detailed description
of the various capabilities provided by VsDevice.

Device Control Functions

VsDevice provides several methods to control the state of your device:

Taking Control / Releasing Control of a Smart Camera

When dealing with smart cameras, your user interface should “Take
Control” of these devices before you perform any operation that may
affect their behavior. Although it’s not required that you take control of a
device before downloading to it or starting and stopping inspections, we
strongly recommended that you do. This insures that your application
does not conflict with another user on another PC who may currently be
connected to the same smart camera (via FrontRunner or AppRunner,
perhaps). The TakeControl method requires a user id and password:

Determine a Device's
Type

1. Query the DeviceClass property.
2. If you wanted to make sure a VsDevice object was
referencing a smart camera, do the following:
if(m_dev.DeviceClass ==
tagDEVCLASS.DEVCLASS_SMART_CAMERA)
{
//perform a Smart-Camera-only action
}
3. If you wanted to make sure a VsDevice object was
referencing a GigE system…
if(m_dev.DeviceClass ==
tagDEVCLASS.DEVCLASS_GIGE_VISION_SYSTEM)
{
//perform a GigE-only action
}

TABLE 3–1. How Do I...
3-14 Visionscape .NET Programmer’s Manual

A Detailed Look at VsDevice

Ta
lk

in
g

 to
 V

is
io

n
sc

ap
e

H
ar

d
w

ar
e

3

Visionscape .NET Programmer’s Manual 3-15

(NOTE: The TakeControl method is relevant only to smart cameras, and
does not apply to other Device types).

bool InControl = m_dev.TakeControl("UserID", "Pwd");
if(InControl)
{
 //safe to download, start, stop, etc
}

You can check whether you already have control by using the VsDevice
HaveControl property:

if(m_dev.HaveControl)
{

//we already have control
}

Release Control by using the ReleaseControl method of VsDevice:

m_dev.ReleaseControl();

Start / Stop Inspections

It’s easy to start and stop all of the inspections on a given Device, you
simply call the StartAll and StopAll methods. To start a specific inspection,
you call the StartInspection and StopInspection methods:

dev.StartAll();//Starts all inspections
dev.StartInspection(0);//starts 1st inspection
//start 2nd insp, run for 3 cycles
dev.StartInspection(1, 3);
dev.StopAll();//stop all inspections
dev.StopInspection(0); //stop 1st inspection

Downloading a Job

You must download a VisionSystemStep to a device, as the
VisionSystemStep represents the vision program for one device. To
download a vision job to a device, you can either call Download, or you
can call DownloadAVP. The Download method will download the
VisionSystemStep that you pass to it. You can either pass it a
VisionSystemStep directly, or you can pass it a reference to your JobStep,
in which case it will find the first VisionSystemStep for you and download
it. The DownloadAVP method takes the file name of an .AVP file, opens it
for you, and then downloads. For each method you can choose to wait
until the download is complete by passing true as the second parameter:

Chapter 3 Talking to Visionscape Hardware: VsCoordinator and VsDevice
//Download the first VisionSystemStep in the Job like this
TransferStatus stat = m_dev.Download(m_Job, true);
//Download the second VisionSystemStep in the Job like this:
_device.Download(_job.VisionSystemStep(1), true);
//Download an AVP file like this
TransferStatus stat =
m_dev.DownloadAVP("SampleJob.avp",true);

Each method returns a TransferStatus enum value which will notify you of
the success or failure of the download. The TransferStatus values are as
follows:

TransferStatus.TransferOK //Successful download
TransferStatus.TransferNotStarted //Failed to start the
//download
TransferStatus.TransferError//An error occurred //during
transfer

It is also possible for an exception to be thrown during download, so you
should always enclose your Download calls in try{}catch{} blocks.

Typical reasons for download exceptions:

– The version of the firmware on your smart camera does not
match the version on your PC. Download is not allowed between
mismatched versions.

– Your Job fails PreRun, and is not ready to run. This often
happens when trying to load a Job that was created on a different
type of device. You should load the Job into FrontRunner and be
sure that it runs there before trying to load it from your
application.

– Trying to download a Job that contains IntelliFind® Steps to a
smart camera that does not have an IntelliFind® License.

If you wish to perform an asynchronous download, in which the download
is started and then control is returned to you immediately, then pass false
as the second parameter. The following example demonstrates how you
would start an asynchronous download of the first VisionSystemStep in
the JobStep named m_Job, and then wait for the download to complete:

TransferStatus stat = m_dev.Download(m_Job, false);
while (m_dev.CheckXferStatus(20) ==
tagXFERSTATUS.XFER_IN_PROGRESS)
{

3-16 Visionscape .NET Programmer’s Manual

A Detailed Look at VsDevice

Ta
lk

in
g

 to
 V

is
io

n
sc

ap
e

H
ar

d
w

ar
e

3

 Application.DoEvents();
}

The parameter to CheckXferStatus is the number of milliseconds to sleep
(and, therefore, not tie up CPU resources) while waiting to see if the
download is complete. The possible return values for CheckXferStatus
are:

• XFER_IN_PROGRESS — Still transferring the job

• XFER_DONE — Finished with the transfer

• XFER_ERROR — Transfer was unsuccessful

As the transfer progresses, the OnXferProgress event is raised by the
VsDevice object to report progress messages and state or error
information. You can use this information to either update a progress bar,
or you can simply display the messages for the user. Following is an
example of how to respond to the OnXferProgress event.

//Wire up the event handler and start the download
 m_dev.OnXferProgress += m_dev_OnXferProgress;
 TransferStatus stat = m_dev.Download(m_Job, false);
}
//this event will be fired as the download progresses
void m_dev_OnXferProgress(int nState, int nStatus, string
msg)
{
 Console.WriteLine("Download Progress:");
 Console.WriteLine(" State: " + nState);
 Console.WriteLine(" Status: " + nStatus);
 Console.WriteLine(" Message: " + msg);
}

The parameters passed along with the OnXferProgress event are:

• nState — This Long value represents the overall state of the transfer.
The following values are possible:

– -1 — Transfer error

– 0 — Transfer started

– 1 — Transfer complete

– 3 — Transfer message
Visionscape .NET Programmer’s Manual 3-17

Chapter 3 Talking to Visionscape Hardware: VsCoordinator and VsDevice
• nStatus — Provides data relative to the current nState value. If nState
indicates an error condition, then this Long value holds the error
code. For all other states, nStatus holds a value from 1 to 100 that
indicates the current completion percentage of the download. So, this
value can be used to update a progress bar.

• msg — This string value describes the current status of the download.
You may prefer to simply printout these messages for your user rather
than implementing a progress bar.

Uploading a Job

Using the Upload method of VsDevice is slightly more involved, as we will
be receiving a new VisionSystemStep, and must prepare the job to
receive it. You will get the new VisionSystemStep from the
OnUploadComplete event, as shown in the following example:

//declare a global VisionSystemStep because we will receive
//this Step
//in an event and need to stash it somewhere
private VisionSystemStep m_UploadedVSStep;
private void UploadJob()
{
 //delete the contents of the existing job 1st
 while(m_Job.Count > 0)
 {
 m_Job.Remove(1);
 }
 //wire up our event handler,
 // to notify us when the upload is complete
 m_dev.OnUploadComplete += m_dev_OnUploadComplete;
 //start the asynchronous upload
 m_dev.Upload(m_Job);
 //waiting for an upload to complete is the same as for a

//download
 while(m_dev.CheckXferStatus(20) ==
tagXFERSTATUS.XFER_IN_PROGRESS)
 {
 Application.DoEvents();
 }
 //upload is complete, do we have a Vision System Step?
 if(m_UploadedVSStep != null)
 {
 //Yes, we successfully received the job
 }
3-18 Visionscape .NET Programmer’s Manual

Obtaining Device Information

Ta
lk

in
g

 to
 V

is
io

n
sc

ap
e

H
ar

d
w

ar
e

3

}
//This event is fired when the Upload is complete, and it
//will return
//the uploaded VisionSystem step to you
void m_dev_OnUploadComplete(int nStatus, VisionSystemStep
pVS)
{
 if(nStatus == 0)
 { m_UploadedVSStep = pVS;
 }
 else
 m_UploadedVSStep = null;
}

Obtaining Device Information

VsDevice has many properties and methods that provide valuable
information about the current device.

Basic Device Information

VsDevice provides a wealth of information about a given Vision System.
For example, this code lists basic information from each of the devices in
the VsCoordinator Devices list:

foreach(VsDevice dev in m_coord.Devices)
{
 Console.WriteLine("Name = " + dev.Name);
 Console.WriteLine("Device Class = " + dev.DeviceClass);
 Console.WriteLine("Model = " + dev.DeviceModel);
 Console.WriteLine("Digitizer = " + dev.DigitizerModel);
 Console.WriteLine("IP Address = " + dev.IPAddress);
 Console.WriteLine("MAC Address = " + dev.MACAddress);
 Console.WriteLine("Software Rev = " +
dev.SoftwareVersion);
 Console.WriteLine("Controlled By " +
dev.NameOfController);
 Console.WriteLine("Num Inspections = " +
dev.NumInspections);
}

Visionscape .NET Programmer’s Manual 3-19

Chapter 3 Talking to Visionscape Hardware: VsCoordinator and VsDevice
DeviceClass Property

The DeviceClass field identifies what type of Device you are dealing with.
It returns an enumeration value of type tagDEVCLASS. The values of the
enumeration are as follows:

DEVCLASS_UNKNOWN=0
DEVCLASS_SOFTWARE_EMULATED=1
DEVCLASS_HOST_BOARD=2
DEVCLASS_PROCESSOR_BOARD=3
DEVCLASS_SMART_CAMERA=4
DEVCLASS_SMART_CAMERA_OLDER=5
DEVCLASS_SMART_CAMERA_UNREACHABLE=6
DEVCLASS_CAMERA=7
DEVCLASS_GIGE_VISION_SYSTEM= 8

The most important values are:

• DEVCLASS_SMART_CAMERA — The Vision HAWK Smart Camera,
for example.

• DEVCLASS_GIGE_VISION_SYSTEM --- A GigE Vision system.

• DEVCLASS_SOFTWARE_EMULATED — A software system with no
hardware.

• DEVCLASS_SMART_CAMERA_UNREACHABLE — A smart
camera that, due to network topology, cannot be connected to via a
TCP connection. Perhaps it’s on a different subnet or has an
incompatible IP address.

IsHostBased Property

You can use the IsHostBased property to determine if there is no target
processor for the device; in other words, if the device is a GigE System,
host based board or software emulated.

Determining if any Inspections are Running

if(m_dev.IsAnyInspectionRunning)
{
 m_dev.StopAll();
}

3-20 Visionscape .NET Programmer’s Manual

Obtaining Device Information

Ta
lk

in
g

 to
 V

is
io

n
sc

ap
e

H
ar

d
w

ar
e

3

Determining if a Particular Inspection is Running

This is easily accomplished via the IsInspectionRunning method.

bool IsInspectionRunning(nInsp As Long)

nInsp — 0 based index of the inspection. If you pass in -1, the function
check all inspections to see if ANY are running.

Device States

It is often valuable to find out what state a device is in. This information is
obtained via the DeviceState property of VsDevice. This property returns
an enumerated value of type tagDEVSTATE. The enumeration values
are:

DEVSTATE_UNKNOWN=0
DEVSTATE_RUNNING=1
DEVSTATE_STOPPED=2
DEVSTATE_NOJOB=3
DEVSTATE_NOCOMM=4
DEVSTATE_ERROR=100
DEVSTATE_FILE_XFER=101
DEVSTATE_TRYOUT=102
DEVSTATE_EDIT=103
DEVSTATE_LIVE=104
DEVSTATE_FUNCTION=105
DEVSTATE_ACQUIRE=106

The most important of these are:

• DEVSTATE_NOJOB — No job has yet been loaded on the device

• DEVSTATE_RUNNING — If any inspection is running

• DEVSTATE_STOPPED — All inspections are stopped

• DEVSTATE_NOCOMM — UDP info has not been received for a long
time, so it is assumed communications have been lost.

Special Device States

The other states are not commonly used in most user applications, but
may be useful in certain situations. There are some shorthand properties
of VsDevice that reflect states that may be useful:
Visionscape .NET Programmer’s Manual 3-21

Chapter 3 Talking to Visionscape Hardware: VsCoordinator and VsDevice
dev.IsInLive - the device is acquiring live images
dev.IsInTryout - the program associated with the device is
in
tryout mode on the PC
dev.IsInAcquire - the device is acquiring a single image

Whenever the device state changes, the OnDeviceStateChanged event is
raised by VsDevice. Normally, you would handle this event to be notified if
the device has been stopped/started or entered an error condition. There
is also the OnDeviceStateChanging event that is raised before the device
state is actually changed.

Determining the I/O Capabilities of a Device

You can determine the I/O capabilities of a device by calling the
QueryIOCaps method, which returns an object of type VsioCaps. The
properties of VsioCaps describe the hardware configuration:

VsioCaps iocaps = m_dev.QueryioCaps();
if(iocaps != null)
{
 Console.WriteLine("# Physical = " +
iocaps.CountPhysical);
 Console.WriteLine("# AnalogOut = " +
iocaps.CountAnalogOut);
 Console.WriteLine("# PhysicalIn = " +
iocaps.CountPhysicalIn);
 Console.WriteLine("# PhysicalOut = " +
iocaps.CountPhysicalOut);
 Console.WriteLine("# RS422Input = " +
iocaps.CountRS422Input);
 Console.WriteLine("# RS422Output = " +
iocaps.CountRS422Output);
 Console.WriteLine("# Sensor = " + iocaps.CountSensor);
 Console.WriteLine("# SlaveSensor = " +
iocaps.CountSlaveSensor);
 Console.WriteLine("# Strobe = " + iocaps.CountStrobe);
 Console.WriteLine("# TTLInput = " +
iocaps.CountTTLInput);
 Console.WriteLine("# TTLOutput = " +
iocaps.CountTTLOutput);
 Console.WriteLine("# Virtual = " + iocaps.CountVirtual);
 Console.WriteLine("Mask Current= " +
iocaps.MaskCurrent);
 Console.WriteLine("Mask GPIO = " + iocaps.MaskGPIO);
3-22 Visionscape .NET Programmer’s Manual

Obtaining Device Information

Ta
lk

in
g

 to
 V

is
io

n
sc

ap
e

H
ar

d
w

ar
e

3

 Console.WriteLine("MAX NER Axis = " +
iocaps.MaxNERLightAxis);
}

UDPInfo Available for Networked Devices

For networked devices such as a smart camera, we recommend that you
first read the section on UDPInfo (see “Networked Device Discovery and
UDPInfo” on page 3-3). As mentioned, networked devices transmit a
packet via the UDP network protocol about every five seconds. This
packet contains much useful information and can be used to great
advantage by a programmer. Its information is accessed via the UDPInfo
property of VsDevice.

Because UDPInfo is only available for networked devices, it’s a good idea
to always check if the object exists before using it:

Visionscape.Internals.VsUDPInfo udp;
udp = m_dev.UDPInfo;
if(udp != null)
{
 Console.WriteLine("Seconds Since Last Updated " +

m_dev.TimeSinceLastRefresh);
 Console.WriteLine("Cycle Count 1st inspection " +

udp.CountCycles1);
 Console.WriteLine("Cycle Count 2st inspection " +

udp.CountCycles2);
 Console.WriteLine("Passed Count 1st inspection " +

udp.CountPassed1);
 Console.WriteLine("Passed Count 2st inspection " +

udp.CountPassed2);
 Console.WriteLine("Name of First Inspection " +

udp.FirstInspectionName);
 Console.WriteLine("Use DHCP " + udp.NetDHCP);
 Console.WriteLine("Net Mask " + udp.NetMask);
 Console.WriteLine("Controlling PC " +
udp.IPAddressOfController);
 Console.WriteLine("AVP Name of loaded program " +

udp.ProgramName);
 Console.WriteLine("Software Version " +
udp.SoftwareVersion);
 Console.WriteLine("Number of Inspections " +
udp.NumInspections);
 Console.WriteLine("Number of Network Connections " +
udp.NumConnections);
Visionscape .NET Programmer’s Manual 3-23

Chapter 3 Talking to Visionscape Hardware: VsCoordinator and VsDevice
}

In the preceding example, notice that the first Debug.Print statement
prints the number of seconds since this data has last been updated with
new UDP packet info from the device. This is done using the VsDevice
TimeSinceLastRefresh property. You can also handle the
OnUDPInfoChanged event, which will be raised whenever a new UDP
packet arrives.

Retrieving Basic information on the Loaded Job

The following example shows the use of a few VsDevice properties in
order to dump out some simple information about the job that is currently
loaded:

Console.WriteLine("Number of inspections loaded" +
dev.NumInspections);
Console.WriteLine("Are any inspections running?" +
dev.IsAnyInspectionRunning);
Console.WriteLine("Is 1st Inspection running? " +
dev.IsInspectionRunning(0));

These methods should not be called unnecessarily, since they could
involve a network transaction with the device and, therefore, may impact
performance. This is not the case with the information obtained via
UDPInfo described above.

Namespace Information

VsDevice allows you to query the namespace of a device in order to
extract information about the Job that it’s currently running. This is
particularly useful when dealing with smart cameras in a user interface
where you do not have the Job loaded locally. By calling the
QueryNamespace method of VsDevice, you will cause a command to be
sent to the device, which will cause it to construct a description of every
Step in the Job. This description will be sent back to the VsDevice object,
and it will construct a tree of VsNameNode objects that mimics the Job on
the Device.

dev.QueryNamespace();

After this call, you can use various methods and properties to access the
namespace data. As we mentioned above, this functionality is primarily
used in applications that will deal with smart cameras, but it works with
3-24 Visionscape .NET Programmer’s Manual

Obtaining Device Information

Ta
lk

in
g

 to
 V

is
io

n
sc

ap
e

H
ar

d
w

ar
e

3

ALL devices. If you already have the Job loaded in memory (in a
JobStep), it’s more efficient to analyze the actual Job rather than dealing
with Namespaces. The following are the methods and properties used to
access the Namespace.

VsNameNodeCollection ListInspections()

Provides you with a list of the running inspections on the device. This is in
the form of a VsNameNodeCollection object, which is a collection of
VsNameNodes. There will be one VsNameNode for each inspection step
in the Job. The VsNameNodes will provide you with useful information
that describes the Inspection Steps. Refer to the following section for
more info on the VsNameNode object.

VsNameNodeCollection ListSnapshots(VsNameNode nnInsp)

Provides a list of Snapshots that live under the specified Inspection. You
must pass in a VsNameNode object that represents an Inspection Step,
and it will return you a list of VsNameNodes, one for every Snapshot Step
under the specified Inspection. The following is an example of how you
might walk through all of the Inspections and Snapshots of a remote
device:

private void AnalyzeNamespace()
{
 //tell the device to send us updated namespace

//information
 m_dev.QueryNamespace();
 //if no namespace information, just exit
 if(m_dev.Namespace == null)
 return;
 //get a list of namenodes for each inspection step
 VsNameNodeCollection nnAllInsp =
m_dev.ListInspections();
 //iterate through the inspection namenodes
 foreach(VsNameNode nnInsp in nnAllInsp)
 { //dump some information on the inspection step
 Console.WriteLine("Inspection Info: " +
nnInsp.UserName + ", "
 + nnInsp.NameType);
 //get a list of all snapshots under this inspection
 VsNameNodeCollection nnAllSnaps =
m_dev.ListSnapshots(nnInsp);
 foreach (VsNameNode nnSnap in nnAllSnaps)
 {
Visionscape .NET Programmer’s Manual 3-25

Chapter 3 Talking to Visionscape Hardware: VsCoordinator and VsDevice
 //snapshot step's user name
 Console.WriteLine("Snapshot Name: " +
nnSnap.UserName);
 //symbolic name
 Console.WriteLine("Symbolic Name: " +
nnSnap.SymbolicName);
 //step type
 Console.WriteLine("Step Type: " + nnSnap.ProgID);
 }
 }
}

VsNameNode Namespace { get; }

This read-only property returns you a reference to the VsNameNode that
represents the VisionSystem Step that is running on the Device. A
VsNameNode object, just like a Step object, is a collection. Each
VsNameNode holds a list of all the child Steps and Datums that live under
the actual Step that it represents. This means that you can walk through
the children of the VsNameNode returned by the Namespace property,
and analyze it in much the same way you would an actual loaded Job.
Refer to the following section on the VsNameNode object for more
information.

VsNameNode

The VsNameNode object represents either a Step or Datum object. It’s
the object used to provide Namespace information for a Device, typically
a remote Device like a smart camera. When we say Namespace
information, we are primarily talking about the Job that is loaded on the
Device. You will access a Device’s Namespace via the VsDevice object’s
Namespace property, or the ListInspections and ListSnapshots functions
(refer to the previous section for more information). The following
example shows how you would access the Namespace of a given Device:

m_dev.QueryNamespace();
VsNameNode nnJob = m_dev.Namespace;

VsDevice’s Namespace property returns a VsNameNode object that
represents the VisionSystem Step of the Job on the Device. When we say
it “represents” the Step, we mean it’s an object that contains information
that describes that Step, it’s not the actual Step. Every VsNameNode
object is also a collection. It holds a collection of VsNameNode objects
that describe all of the child Steps AND Datums of the Step that it
3-26 Visionscape .NET Programmer’s Manual

Obtaining Device Information

Ta
lk

in
g

 to
 V

is
io

n
sc

ap
e

H
ar

d
w

ar
e

3

represents. This means that you can walk through the elements of the
VsNameNode object, just as you can walk through the elements of a Job
tree. The next most obvious question is, what information does the
VsNameNode object provide?

VsNameNode Properties

As we've already said, a VsNameNode represents either a Step or a
Datum. Therefore, the properties are intended to describe that Step or
Datum.

tagNAMENODE_TYPE NameType { set; get; }

This property returns a value that identifies the type of object represented
by the NameNode. Possible values are:

– NAMETYPE_DATUM — The NameNode represents a Datum
object.

– NAMETYPE_STEP — The NameNode represents a Step object.

– NAMETYPE_FIELD — The NameNode represents a field.

tagNAMENODE_CAT NameCat { set; get; }

Returns a value that indicates the category of the Step or Datum. This is
roughly equivalent to the Category property of Step and Datum. Possible
values for Datums:

– VS_INPUT_DATUM

– VS_OUTPUT_DATUM

– VS_RESOURCE_DATUM

Possible values for Steps:

– VS_POSTPROC_STEP

– VS_PREPROC_STEP

– VS_PRIVATE_STEP

– VS_SETUP_STEP

– VS_PART_STEP
Visionscape .NET Programmer’s Manual 3-27

Chapter 3 Talking to Visionscape Hardware: VsCoordinator and VsDevice
string ProgID { set; get; }

Returns a string that is equivalent to the Step and Datum object’s Type
property. This is in the form “Step.type.1” or “Datum.type.1” where “type”
would represent the actual type of the Step or Datum.

string SymbolicName { set; get; }

The symbolic name of the Step or Datum. This is equivalent to the
NameSym property of Step and Datum. Return value is a string.

int TaggedForUpload { get; }

Only applies to Datums. Returns 1 if this Datum has been selected for
upload, 0 if not. In other words, this Datum was added to the Inspection
Step’s “Select Results to Upload” list and will, therefore, show up in the list
of results in each inspection report.

string UserName { set; get; }

The user assigned name of the Step or Datum. This is equivalent to the
Name property of Step and Datum. Return value is a string.

string GUID { set; get; }

A string that represents the actual GUID of the object

int Handle { set; get; }

This is functionally equivalent to the Handle property of the Step and
Datum objects.

VsNameNode Inspection { get; }

Returns a reference to a VsNameNode that represents the parent
Inspection Step.

VsNameNode Parent { set; get; }

Returns a reference to the parent VsNameNode.

int Count { get; }

Returns a count of how many child VsNameNodes are in your collection.
3-28 Visionscape .NET Programmer’s Manual

Obtaining Device Information

Ta
lk

in
g

 to
 V

is
io

n
sc

ap
e

H
ar

d
w

ar
e

3

VsDevice Device { set; get; }

Returns a reference to the VsDevice object that produced this
VsNameNode.

VsNameNode Methods

VsNameNodeCollection SearchForType(string bstrType)

Allows you to search for all of the child nodes that are of the type
specified by the bstrType parameter. A VsNameNodeCollection is
returned that contains all of the nodes found.

//get a list of all fast edge steps under this namenode
VsNameNodeCollection allFastEdge =
nnSnap.SearchForType("Step.EdgeFast.1");
//iterate the list of fast edge steps
foreach(VsNameNode nnFastEdge in allFastEdge)
{
 Console.WriteLine("Fast Edge Step Name: " +
nnFastEdge.UserName);
}

VsNameNode FindParentOfType(string ProgID)

Allows you to search for a parent Step or Datum that is of the type
specified by the ProgId parameter. A VsNameNode reference is returned.

//find the parent inspection of this namenode
VsNameNode parentInsp =
nnSnap.FindParentOfType("Step.Inspection.1");

string MakePath(string StopAtType)

Builds a path string from the current node up to the first parent node that
is of the type specified by the StopAtType parameter. If StopAtType is an
empty string, the routine defaults to the Inspection step.

VsNameNodeCollection SearchForTagged(string strTypeIn)

Returns a collection of name nodes that are selected for upload. This only
applies to Datums, so only VsNameNodes that represent Datums will be
in the list. The strTypeIn parameter can be used when you only want your
Visionscape .NET Programmer’s Manual 3-29

Chapter 3 Talking to Visionscape Hardware: VsCoordinator and VsDevice
list to include datums of a certain type, pass an empty string to return all
Datum types.

VsNameNode nnJob = m_dev.Namespace;
//get a list of all datums selected for upload
VsNameNodeCollection uploadList = nnJob.SearchForTagged("");
//get a list of only Point List Datums that are selected for Upload
uploadList = nnJob.SearchForTagged("Datum.PtList.1");

A Detailed Look at VsCoordinator

In general, you will use VsCoordinator to provide access to the list of
available Devices. VsCoordinator does have other advanced uses
however. In this section, we will take a detailed look at all of
VsCoordinator’s capabilities.

Device Collection

All devices are accessible via the Devices collection property of
VsCoordinator. You can iterate over accessible devices using code such
as:

VsCoordinator m_coord = new VsCoordinator();
foreach(VsDevice dev in m_coord.Devices)
{

Console.WriteLine("Name = " + dev.Name);
}

DeviceFocusSet

VsCoordinator maintains a list of all available Devices, but you can
specify one of those Devices to be the “Focus” device. This is done by
calling the DeviceFocusSet method, which will cause the OnDeviceFocus
event to be fired. This is an advanced method that you can use in your
application to allow multiple forms and controls to all synchronize
themselves to a given Device. If each form and control in your application
has it’s own instance of a VsCoordinator object, then you could call the
DeviceFocusSet method in one place in your code, and then the
OnDeviceFocusEvent would be fired in each of those VsCoordinator
instances. You could then add logic to each of your forms and controls to
respond to the event, and automatically update themselves whenever the
selected Device changes. This is how the Device focus is set:
3-30 Visionscape .NET Programmer’s Manual

A Detailed Look at VsCoordinator

Ta
lk

in
g

 to
 V

is
io

n
sc

ap
e

H
ar

d
w

ar
e

3

//dev is a VsDevice object that we want
//to be the "focus" device
m_coord.DeviceFocusSet(m_dev, -1);

The second parameter is a group index, which can be used in cases
where you want to have some of your forms and controls “focused” on
different devices. The group index is passed back in the OnDeviceFocus
event. A group index of -1 is typically used when you don’t wish to use
this feature.

• There is also a OnDeviceFocusChanging event that is fired before
the actual OnDeviceFocusChanged event, which is useful if there is
some processing to do before any other control handles the
OnDeviceFocus event.

To clear the device focus, pass null to signify that no device is selected:

m_coord.DeviceFocusSet(null, -1);

You can retrieve the device with the focus at any time by calling the
DeviceFocusGet method. Be sure to always check if the device is valid,
by always writing code such as:

VsDevice dev = m_coord.DeviceFocusGet(-1);
if(dev != null)
{
 //do something
}

The parameter passed to DeviceFocusGet is again a group ID, set this to
-1 if you are not using a group ID.

Device Focus Property

It’s also possible to use a shorthand method to set and get the device
focus in situations where a GroupID is not necessary. You can simply use
the DeviceFocus property of VsCoordinator:

//set the focus device like this
m_coord.DeviceFocus = m_dev;
//get the focus device like this
VsDevice dev = m_coord.DeviceFocus;
Visionscape .NET Programmer’s Manual 3-31

Chapter 3 Talking to Visionscape Hardware: VsCoordinator and VsDevice
DeviceFocusSetOnDiscovery

If you know the name of the Device that you want to set the focus to, but
you don’t have the device object, you can use the
DeviceFocusSetOnDiscovery method. Earlier in this chapter we
discussed how to use this method to wait for your smart camera to be
discovered when your application is first starting up. For example, to set
the device focus to “MyCamera”:

m_coord.DeviceFocusSetOnDiscovery("MyCamera", -1);

This will cause the OnDeviceFocus event to be sent when MyCamera is
discovered. This will occur immediately if MyCamera has already been
discovered, or after a delay of up to five seconds if no UDP packets have
yet been received from that Device.

Finding a Device by Name or IP

You can also look up a device in the coord.Devices list quickly by using
the FindDeviceByName method. A null value is returned if the device can
not be found. For example:

VsDevice dev = m_coord.FindDeviceByName("MyHawkEye_1600T");

If you do not know the name of the device, but know the IP Address, use
the FindDeviceByIP method. For example:

VsDevice dev = m_coord. FindDeviceByIP("10.2.1.198");

You can also get the IP address of a device with a given name by using
the LookupIPAddress function.

string devIP = m_coord.LookupIPAddress("MyHawkEye_1600T");

OnDeviceDiscovered Event

The OnDeviceDiscovered event is fired whenever a new device has been
found. This event is useful when you are trying to display a list of current
devices to the user.

Using Message Broadcasting to Simplify Application Design

There are some functions of VsCoordinator that help with organizing a
project in which information needs to be shared between different
3-32 Visionscape .NET Programmer’s Manual

A Detailed Look at VsCoordinator

Ta
lk

in
g

 to
 V

is
io

n
sc

ap
e

H
ar

d
w

ar
e

3

components. The most useful of these is the Broadcast mechanism. By
using the methods BroadcastMessage or BroadcastObj, you can cause
the OnBroadcastMessage or OnBroadcastObj events to be raised for all
other VsCoordinators. For example, let’s say you have a button on a form,
and when you press it you want all other forms to receive an event. You
can do this as follows:

private void MyButton_Click(object sender, EventArgs e)
{
 m_coord.BroadcastMessage(this.Name, "MyPrivateMessage",
"param");
}

• The first parameter is a name that identifies the originator of the
message. In this example, we are using the form name that is
accessed using this.Name. If this code was in a user control, you
would use UserControl.Name instead. You will see why the name is
important in a moment.

• The second parameter is a string that represents the actual message
to be broadcast.

• The third parameter is optional; you can use it to add additional
parameters to the message.

The BroadcastMessage function will cause the OnBroadcastMessage
event to fire for every VsCoordinator in the application. For example, if
another form was interested in this message, you would implement the
OnBroadcastMessage event as follows (assume we our instance of
VsCoordinator is named m_coord):

//wire up the event handler
m_coord.OnBroadcastMessage += m_coord_OnBroadcastMessage;

void m_coord_OnBroadcastMessage(string bstrSender,
 string bstrMsg, string bstrParam)
{
 if(bstrSender != this.Name)
 {
 if(bstrMsg == "MyPrivateMessage")
 {
 //do something
 }
 }
}

Visionscape .NET Programmer’s Manual 3-33

Chapter 3 Talking to Visionscape Hardware: VsCoordinator and VsDevice
Notice the first statement that exits if the bstrSender parameter is the
same as the name of the form. This is simply a way of checking if the
broadcast came from this form or from somewhere else. This may not be
necessary depending on what you are doing, but it’s often the case that
the originator of a message does not want to handle the message
themselves. After that you would simply enter an ‘if’ or ‘switch’ statement
to check if the message is something you want to process.

A variation of the broadcast message allows you to send an object as the
parameter. For example:

private void MyButton_Click(object sender, EventArgs e)
{
 object someObject = new MySpecialObject();
 m_coord.BroadcastObj(this.Name, "MyPrivateMessage",
someObject);
}

And the event handler:

void m_coord_OnBroadcastObj(string strSender, string
strMsg,object obj)
{
 switch(strMsg)
 {
 case "MyPrivateMessage":
 //do something
 break;
 }
}

UpdateUI Method

Calling the UpdateUI of VsCoordinator causes the OnUpdateUI event to
be raised for every VsCoordinator reference. You can use this method as
a way to inform every form or control that something has changed that
requires a display update. For more complex projects, the
BroadcastMessage approach is preferred because you can define your
own messages.

LogMessage and the Debug Window

As an aid to debugging, you can use the Visionscape debug window
(which is accessed via the AvpSvr taskbar application) to log messages, if
desired, by using the LogMesssage method:
3-34 Visionscape .NET Programmer’s Manual

A Detailed Look at VsCoordinator

Ta
lk

in
g

 to
 V

is
io

n
sc

ap
e

H
ar

d
w

ar
e

3

m_coord.LogMessage("Something important happened!", false);

The second parameter should be set to True if you are reporting an error
condition (and will appear red in the display), and False if the message is
for information purposes only. You can show or hide the debug window
using the function ShowLogWindow:

m_coord.ShowLogWindow(true); // to show the display
m_coord.ShowLogWindow(false); // to hide the display

Getting Information About Local Network Interface
Controllers

You can retrieve the state of any local Network Interface Controller
devices using the NetworkAdapters property of VsCoordinator. You can
use a VsNetworkAdapter to traverse this collection:

foreach(VsNetworkAdapter nic in m_coord.NetworkAdapters)
{
 Console.WriteLine("Description = " + nic.Caption);
 Console.WriteLine("Gateway = " + nic.DefaultIPGateway);
 Console.WriteLine("DHCP = " + nic.DHCPEnabled);
 Console.WriteLine("DHCP Server = " + nic.DHCPServer);
 Console.WriteLine("IP Address = " + nic.IPAddress);
 Console.WriteLine("Subnet Mask = " + nic.IPSubnet);
 Console.WriteLine("MAC Address = " + nic.MACAddress);
}

You can check for changes to the network adapters by calling the
RefreshNetworkAdapters method. If the list of network adapters has
changed since your application started, or since the last time you called
RefreshNetworkAdapters, then the OnNICChange event will be raised.
For example, if a wireless connection has been made or dropped, or a
change has been made to the network configuration via the control panel.

VsCoordinator Reference

VsCoordinator is part of the Visionscape.Devices namespace. Following
is a complete list of all properties, methods and events.

Device Enumeration and Device Focus

VsDeviceCollection Devices { get; }

This property is a collection of all vision devices that can be connected to.
Visionscape .NET Programmer’s Manual 3-35

Chapter 3 Talking to Visionscape Hardware: VsCoordinator and VsDevice
VsDevice FindDeviceByName(string strName)

This function looks up a device using the specified name. This function
returns a VsDevice object if found, and returns null if not found.

VsDevice DeviceFocus { set; get; }

This property sets/gets the focus device. If you need to use a GroupID, to
allow more than one focus device, then use DeviceFocusGet instead.

string LookupIPAddress(string Name)

Looks up the IP address of the device with the specified name. It returns
the device's IP address if found, and an empty string if not found.

void DeviceFocusSet(VsDevice pDevice, int nGroupID)

This method sets the focus to the specified VsDevice object. Use the
GroupID parameter in situations where multiple focus devices are
required. Use the DeviceFocus property if don’t need multiple focus
Devices.

VsDevice DeviceFocusGet(int nGroupID)

This function returns the current focus device. Use the GroupID
parameter if multiple focus devices have been specified.

VsDevice FindDeviceByIP(string strIP)

This function searches the Device collection for the supplied IP Address
string. It returns a VsDevice if found, and null if not found.

void DeviceFocusSetOnDiscovery(string bstrName, int GroupID)

This method sends a OnDeviceFocus event when the specified device
name is available for use. For network devices (i.e., smart cameras) this
is the preferred method for connecting.

Event OnDeviceDiscovered (VsDevice newDevice)

This event occurs when a new network device (i.e., smart camera) is
discovered.
3-36 Visionscape .NET Programmer’s Manual

A Detailed Look at VsCoordinator

Ta
lk

in
g

 to
 V

is
io

n
sc

ap
e

H
ar

d
w

ar
e

3

Event OnDeviceFocus (VsDevice newDevice)

This event occurs whenever the current focus device changes. The focus
device is selected via the DeviceFocus property, or the DeviceFocusSet
method.

Event OnDeviceLost (VsDevice newDevice)

This event occurs when a device can no longer be communicated with;
for example, if it has been physically disconnected.

Event OnDeviceFocusChanging(VsDevice objDevice, int nGroupID)

This event is sent just before the device focus is about to change.

Event OnDeviceFocusEx (VsDevice objDevice, int nGroupID)

This event is similar to the OnDeviceFocus event, except it provides the
GroupID. This is primarily useful if there are multiple focus devices.

UI Coordination

void UpdateUI()

This method sends the OnUpdateUI event from all VsCoordinators. Use
this to force various controls to refresh.

void BroadcastMessage(string bstrSender, string bstrMsg, string
bstrParam)

This method sends the OnBroadcastMessage from all VsCoordinators.
Use this to send coordinating messages between controls. The bstrMsg
parameter is a user defined string that identifies the action to be taken.
Use the bstrParam to supply additional information.

void BroadcastObj(string bstrSender, string bstrMsg, object obj)

This method sends the OnBroadcastMessage from all VsCoordinators.
Similar in function to the BroadcastMessage function, except that an
object can be passed as a parameter.

void SetGlobalString(string bstrKey, string bstrString)

This method associates a string with a symbolic name so that it can be
retrieved later, even from a different form or module.
Visionscape .NET Programmer’s Manual 3-37

Chapter 3 Talking to Visionscape Hardware: VsCoordinator and VsDevice
string LookupGlobalString(string bstrKey)

This function retrieves a Global String that was set via the SetGlobalString
function.

Event OnUpdateUI()

This event occurs as a result of calling the UpdateUI method.

Event OnBroadcastMessage (string bstrSender, string bstrMsg,
string bstrParam)

This event occurs as a result of calling the BroadcastMessage method,
and it allows you to send your own custom messages along with a string
parameter.

Event OnBroadcastObj (string bstrSender, string bstrMsg, object
obj)

This event occurs as a result of calling the BroadcastObj method. It allows
you to send your own custom messages, along with an object variable.

Event OnNICChange()

This event occurs if a change has been made to any Network Interface
Controller settings (for example, the host PC's IP address or Net Mask).

Miscellaneous

void ShowLogWindow(bool bShow)

This method shows or hides the Visionscape debugging window.

void LogMessage(string strMsg, bool bError)

This method displays a message to the Visionscape debugging window. If
bError is True, then the message is displayed in red.

object Job { set; get; }

This property gets/sets the currently loaded Job. Please refer to the
detailed documentation for further information about the Job property. For
more information, see “Connecting Jobs to Visionscape Devices” on page
3-6.
3-38 Visionscape .NET Programmer’s Manual

A Detailed Look at VsCoordinator

Ta
lk

in
g

 to
 V

is
io

n
sc

ap
e

H
ar

d
w

ar
e

3

VsNetworkAdapterCollection NetworkAdapters { get; }

This property returns a collection of VsNetworkAdapter objects,
containing information about the Network Interface Controllers on the PC.

VsDevice Reference

The VsDevice object is part of the Visionscape.Devices namespace.
Following is a complete list of all properties, methods and events.

Identification and Information

Table 3–2 summarizes the identification and informational properties of
VsDevice.

TABLE 3–2. Identification Properties of VsDevice

Property Name Description

Name The name of the Device. For smart cameras, this name is user
assigned.

Key A unique key string identifying the device.

DirectoryID An ID that identifies the device in the VsDirectory structure.

DeviceClass The class of device. The value can be one of the following:
DEVCLASS_UNKNOWN=0
DEVCLASS_SOFTWARE_EMULATED=1
DEVCLASS_HOST_BOARD=2
DEVCLASS_PROCESSOR_BOARD=3
DEVCLASS_SMART_CAMERA=4
DEVCLASS_SMART_CAMERA_OLDER=5
DEVCLASS_SMART_CAMERA_UNREACHABLE=6
DEVCLASS_CAMERA=7

DeviceModel The device model number.

DigitizerModel The digitizer model number.

IsHostBased True if the host PC's CPU is used to run the inspections.

SoftwareVersion A string representing the software revision loaded on the
device.

IPAddress The IP address of the device.

MACAddress The MAC address of the device.

NetMask The Network Mask of the device.

NetworkConnectable True if the device is on the same subnet as the host PC.

TimeSinceLastRefresh The time in milliseconds since the last UDP info message has
been received from the device.
Visionscape .NET Programmer’s Manual 3-39

Chapter 3 Talking to Visionscape Hardware: VsCoordinator and VsDevice
Download / Upload Job

TransferStatus Download(JobStep job, bool bWait)

This function downloads the specified Job to the device. If the Job
contains multiple VisionSystem Steps, the first is downloaded. If the bWait
parameter is true, the function will not return until the download is
complete. If false, an asynchronous download is started and the function
returns immediately. The status of the download is returned in the
enumerated TransferStatus value. This function can also throw an
exception.

int Download(VisionSystemStep objVS, int bAsync)

This overloaded version of the Download function takes in a
VisionSystemStep rather than the Job step. You can ignore the 2nd
parameter, this version always performs an Asynchronous download. You
would typically use this version if your Job contains more than one
VisionSystemStep, and you need to be able to download any of them.

NameOfController The name or IP address of the PC that has control of the
device.

IsInTryout True if the device is in Tryout mode.

IsInLive True if the device is in acquire live mode.

IsInAcquire True if the device is acquiring an image for setup.

HaveControl True if the current process has taken control of the device by
using the TakeControl method.

DeviceState The current state of the device. Can be one of the following
values:
DEVSTATE_UNKNOWN=0
DEVSTATE_RUNNING=1
DEVSTATE_STOPPED=2
DEVSTATE_NOJOB=3
DEVSTATE_NOCOMM=4
DEVSTATE_ERROR=100
DEVSTATE_FILE_XFER=101
DEVSTATE_TRYOUT=102
DEVSTATE_EDIT=103
DEVSTATE_LIVE=104
DEVSTATE_FUNCTION=105
DEVSTATE_ACQUIRE=106

TABLE 3–2. Identification Properties of VsDevice
3-40 Visionscape .NET Programmer’s Manual

A Detailed Look at VsCoordinator

Ta
lk

in
g

 to
 V

is
io

n
sc

ap
e

H
ar

d
w

ar
e

3

TransferStatus DownloadAVP(string JobPath, bool bWait)

This function downloads the Job contained in the specified AVP file. If the
bWait parameter is true, the function will not return until the download is
complete. If false, an asynchronous download is started and the function
returns immediately. The status of the download is returned in the
enumerated TransferStatus value. This function can also throw an
exception.

bool Upload(JobStep job)

This function uploads the Job that is currently loaded on the device. This
function uploads a VisionsSystem step (and all of its child steps), and
inserts it into the specified JobStep. Refer to the detailed documentation
for further information on uploading. For more information, see
“Uploading a Job” on page 3-15.

tagXFERSTATUS CheckXferStatus(int sleep_ms)

After initiating an upload or download in asynchronous mode, call the
CheckXferStatus function in a loop until the transfer is complete. The
sleep_ms parameter specifies the number of milliseconds to sleep if the
transfer is not complete. It’s recommended that the loop contain an
Application.DoEvents call so that the user interface remains responsive.

Control

bool TakeControl(string bstrUID, string bstrPWD)

This function allows you to TakeControl of the smart camera by logging in
with a User ID and Password.

bool HaveControl { get; }

This property returns True if you currently have control.

void ReleaseControl()

This method releases control of a smart camera.

void StartAll()

Starts all inspections on the device.
Visionscape .NET Programmer’s Manual 3-41

Chapter 3 Talking to Visionscape Hardware: VsCoordinator and VsDevice
void StartInspection(int nInsp, int nCycles)

This method starts the specified inspection (0 based index) on the device.
If nInsp is set to -1, all inspections are started. You can use the nCycles
parameter to specify the number of cycles to run, set this to 0 to run for an
infinite number of cycles.

void StopAll()

Stops all running inspections on the device.

void StopInspection(int nInsp)

This method stops the specified inspection (0 based index) on the device.
Pass in -1 to stop all inspections.

bool IsInspectionRunning(int nInsp)

This function returns True if the specified inspection is running on the
device.

bool IsAnyInspectionRunning { get; }

This property returns True if any inspection is running on the device.

int NumInspections { get; }

This property returns the number of inspections on the device.

void ResetCounters(int nInsp)

This method resets the inspection counters for the specified inspection.

int ResetDevice(string bstrUser, string bstrPassword)

This function reboots the Network Device. It requires that you specify a
username and password. Has no effect on Host based Devices.

Advanced

VsioCaps QueryioCaps()

This function queries the device for a structure that describes the I/O
capabilities, such as the number of each type of I/O supported.
3-42 Visionscape .NET Programmer’s Manual

A Detailed Look at VsCoordinator

Ta
lk

in
g

 to
 V

is
io

n
sc

ap
e

H
ar

d
w

ar
e

3

VsUDPInfo UDPInfo { get; }

This property returns a structure with all the information contained in the
UDP info packet sent by smart camera network devices.

object ProgramController { set; get; }

If a Job is loaded into host memory, each VisionSystemStep can be
accessed via its “Program Controller” interface. This property provides the
means to access that interface.

void GetDeviceBufferDm(string bstrPath, out
Visionscape.Steps.BufferDm objBufDm)

Use this method to directly read a buffer out of a device and copy the data
into the supplied BufferDm. The bstrPath parameter should be the
symbolic name path of the Buffer desired.
Visionscape .NET Programmer’s Manual 3-43

Chapter 3 Talking to Visionscape Hardware: VsCoordinator and VsDevice
3-44 Visionscape .NET Programmer’s Manual

4

R
ec

ei
vi

n
g

 D
at

a
w

it
h

R

ep
o

rt
 C

o
n

n
ec

ti
o

n
s

4

CHAPTER 4 Receiving Data with Report
Connections

Introduction to the Visionscape.Communications
namespace:

In the previous chapters we explained how to load vision Jobs, and how
to download them and get them running on any Visionscape Device. In
this chapter we will discuss how to receive information from your running
inspections. The objects in the Visionscape.Communications namespace
will allow you to receive and handle reports at runtime that can contain
images and/or result data.

Assembly Names: Visionscape.dll & Visionscape.Communications.dll

Namespace:Visionscape.Communications

To access this namespace, add the following .NET references to your
project:

Visionscape
Visionscape.Communications

Add the following statement to the top of your C# files in order to make
access to this namespace easier (all sample code in this chapter
assumes the following statement is presnt):

using Visionscape.Communications;
Visionscape .NET Programmer’s Manual 4-1

Chapter 4 Receiving Data with Report Connections
ReportConnection Object:

The ReportConnection object can connect to any Visionscape Device,
and it allows you to receive inspection results, inspection stats, and
images while the Device is running. Key points to understand:

– Connects to any Visionscape Device type. It will receive reports
across the network when connecting to a smart camera, or
across threads within your PC application process when dealing
with GigE or Software Systems. It can even receive reports
across processes when dealing with GigE and Software
Systems.

– A ReportConnection connects to one and only one Inspection
Step at a time. If you are running multiple inspections, you will
create a separate ReportConnection for each. You can also have
multiple ReportConnections connected to the same inspection.

– You will receive the NewReport event to notify you of new
inspection cycle reports.

A ReportConnection can be configured to be “lossless”, insuring that you
will receive a cycle report from every inspection cycle. Or it can be
configured to be “lossy” meaning it will throw away cycle reports when
your application is too busy to receive them.

This NewReport event passes you an InspectionReport object. The
InspectionReport object will contain the inspection stats (in the form of a
ReportInspectionStats object), the uploaded results (in the form of an
InspectionReportValues object) and potentially a collection of images (in a
collection of BufferDm objects, accessed via the Images property). More
on that later, lets start with the basics.

Creating a Report Connection

The following sample code demonstrates how to establish a report
connection to a Device. In this example, assume you have a GigE system
named “GigeVision1” on which a Job is already loaded and running:

//Declare a member variable of type ReportConnection
private ReportConnection m_RepCon = new ReportConnection();
private void frmMain_Load(object sender, EventArgs e)
{…
4-2 Visionscape .NET Programmer’s Manual

ReportConnection Object:

R
ec

ei
vi

n
g

 D
at

a
w

it
h

R

ep
o

rt
 C

o
n

n
ec

ti
o

n
s

4

 //connect to the 1st inspection on the device “GigeVision1”
 m_RepCon.Connect("GigeVision1", 1);
 //wire up our event handler
 m_RepCon.NewReport += m_RepCon_NewReport;
}
//You will now receive this event whenever a new
// Inspection report is available
void m_RepCon_NewReport(object sender,
ReportConnectionEventArgs e)
{
 Console.WriteLine("Received a New Inspection Cycle
Report");
}

You simply declare a member variable in your form/class to be of type
ReportConnection, instantiate the object, and call one of the Connect
methods. In this case, we connected by passing in the name of the
device, and the 1 based index of the inspection we wanted to receive
reports from. You must also wire up the event handler, which in this case
is our m_RepCon_NewReport function. At runtime, the
m_RepCon_NewReport function will be called whenever a new report is
generated (new reports are always generated at the end of an inspection
cycle). The event will pass you a ReportConnectionEventArgs object,
which contains an InspectionReport object. This object contains all of
your inspection counts, timing, uploaded results, and even images if you
choose to add them to the report (more on that later). We will cover the
contents of the InspectionReport object in more detail later on in this
chapter.

Connection Details

As we just demonstrated, the Connect method of ReportConnection
establishes a report connection to one of the inspections on a running
device. We provide several overloaded versions of the Connect function:

bool Connect(string deviceName, int inspIndex,
ReportConnection.ConnectOptions reportOptions)

– deviceName – The name of the Device to connect to.

– inspIndex – The 1 based index of the inspection you want to
receive reports from.
Visionscape .NET Programmer’s Manual 4-3

Chapter 4 Receiving Data with Report Connections
– reportOptions – Specifies the type of data that should be included
in the Inspection Report. This is specified using the enumerated
type ConnectOptions, which is a member of the
ReportConnection object. ConnectOptions is a Flag type,
meaning you can combine options. The Connect Options are:

• ConnectOptions.NONE: This option will automatically
include nothing in the report data. You would use this option
when you only want to receive data that you added
programmatically via the DataRecordAdd method.

• ConnectOptions.STATS: Include inspections stats in the
report. This includes inspection counts, timing info, and
memory data, among other values.

• ConnectOptions.TAGGED_FOR_UPLOAD: Include the
inspection Datums that have been tagged for upload. This
would include any values that you have selected in the
Inspection Step’s “Results to Upload” datum, as well as any
Datum values that you have programmatically tagged for
upload.

• ConnectOptions.DEFAULT: The default is to include both the
Stats and the Datums that are tagged for upload. This option
is equivalent to:

• ConnectOptions.STATS |
ConnectOptions.TAGGED_FOR_UPLOAD

• The following two options are rarely used, but are available.

• ConnectOptions.NO_IMAGES: Never include images in the
report. One way to include image buffers in your report is to
add them to your Inspection’s “Result to Upload” list in
FrontRunner. In that case, you could combine this option with
the TAGGED_FOR_UPLOAD option in situations where you
only wanted the inspection data, and wanted the images to
be left out to improve performance.

• ConnectOptions.IGNORE_UPLOAD_QUALIFIER: The
Inspection Step has a Datum named “Results Upload
Qualified Condition”. This datum allows you to enter an
expression that determines when results should be uploaded.
4-4 Visionscape .NET Programmer’s Manual

ReportConnection Object:

R
ec

ei
vi

n
g

 D
at

a
w

it
h

R

ep
o

rt
 C

o
n

n
ec

ti
o

n
s

4

Setting this flag will cause that expression to be ignored, and
results will be uploaded after each cycle.

Connects to the specified inspection, on the specified Device. The data
that will be automatically added to the report is determined by the value
you specify in the reportOptions parameter. The function returns true if
the connection is successfully established, false if not. Once connected,
you will receive the NewReport event whenever the inspection has a
report to send to you.

bool Connect(Visionscape.Devices.VsDevice device, int inspIndex,
ReportConnection.ConnectOptions reportOptions)

Identical to the Connect method just documented, only this version takes
a reference to the VsDevice object you are connecting to, rather than it’s
name.

bool Connect(string deviceName, int inspIndex)
bool Connect(Visionscape.Devices.VsDevice device, int inspIndex)

These versions connect to the Device specified by either it’s name or by
the actual VsDevice object. The inspection is specified by the inspIndex
parameter. These versions however do not require you to specify any
ConnectOptions. This version automatically specifies
ConnectOptions.DEFAULT.

bool Connect(string deviceName)
bool Connect(Visionscape.Devices.VsDevice device)

These versions of Connect will connect to the Device specified by it’s
name or by the actual VsDevice object. However these versions
automatically choose the first inspection, and automatically specify
ConnectOptions.DEFAULT as the ConnectOptions value.

There are several other important properties of the ReportConnection
object that allow you to fine-tune the performance of your connection.

public bool DropWhenBusy { set; get; }

The default for this property is true, which means your reports will be
dropped if the Inspection is too busy to send them. This means your
connection will be lossy. If you require a lossless connection, meaning
you don’t want any reports to be dropped, then you must set this property
to false. You should understand however that a lossless connection may
Visionscape .NET Programmer’s Manual 4-5

Chapter 4 Receiving Data with Report Connections
impact the performance of your inspection. If your inspection completes a
cycle, and it tries to send a report, but your report connection is still busy
trying to send the report from the previous cycle, then the inspection will
block until it can send the new report. This could cause problems for high-
speed, time-critical inspections. If this property is set to true, the
Inspection would not block; it would simply drop the report and continue
on to the next inspection cycle.

public int MaxRate { set; get; }

Use this property to set the maximum number of reports that can be sent
per second. The default is 0, which means to send the maximum number
of reports possible, no limit. A setting of 2 would mean no more than 2 per
second. Using 2 as an example, the connection would translate this
setting into a number of milliseconds (1000ms / 2 = 500ms). Whenever
the connection sends a report, it will start timing, and if another report is
ready for transfer in less than 500ms, then it will be thrown away. In other
words, your running inspection will only send one report every 500ms.

ReportConnection.FreezeModeOptions FreezeMode { set; get; }

By default, your report connection will try to send a report after every
inspection cycle. You can use this property to change that behavior by
specifying one of the enumerated values in
ReportConnection.FreezeModeOptions :

– FreezeModeOptions.SHOW_ALL — Default, send a report after
every inspection cycle.

– FreezeModeOptions.SHOW_FAILED — Only send a report when
the inspection fails.

– FreezeModeOptions.FREEZE_THIS — Freezes the report
connection, which means no more reports will be sent.

– FreezeModeOptions.FREEZE_NEXT_FAILED — Freezes the
report connection on the next failed inspection. Not to be
confused with the SHOW_FAILED option, reports will be sent
continuously while in this mode UNTIL there is an inspection
failure, at which time it will freeze.

– FreezeModeOptions.FREEZE_LAST_FAILED — Switching to this
mode will cause a report to be sent from the last failed inspection
cycle, and then the connection will be frozen.
4-6 Visionscape .NET Programmer’s Manual

The NewReport Event:

R
ec

ei
vi

n
g

 D
at

a
w

it
h

R

ep
o

rt
 C

o
n

n
ec

ti
o

n
s

4

– FreezeModeOptions.FREEZE_NEXT_QUAL — This option only
applies if you are using the “Freeze Qualified Condition” datum in
the Inspection Step. The datum allows you to specify an
inspection condition which, if evaluated as True, will freeze the
connection. Without this setting, the datum in the inspection step
has no effect on your report connection.

bool ExcludeTaggedImages { set; get; }

The default is False. When set to True, any images buffers that have
been added to the list of results to upload will be excluded from the report.
This property has the same effect as specifying
ConnectOptions.NO_IMAGES when calling the Connect method.

public bool GraphicsOn { set; get; }

The default is True. When set to False, any images included in the report
will not include graphics.

The NewReport Event:

Once you have established a report connection, you will receive
inspection cycle reports by handling the NewReport event. To handle this
event you must wire up an event handler. The function signature for the
NewReport event handler must be as follows:

void NewReportHandler(object sender,
ReportConnectionEventArgs e)

– sender: The object that generated the event

– e: A ReportConnectionEventArgs object. This is derived from
EventArgs and adds the following two properties:

• Report: This is a reference to the InspectionReport object. All
of your cycle data is contained within this one object..

• GoingToFreeze: This bool value will be set to true when the
image display is about to be frozen, false otherwise.

The following example demonstrates wiring up an event handler, and then
extracting the InspectionReport when an event is generated. Assume our
ReportConnection object is named m_RepCon:
Visionscape .NET Programmer’s Manual 4-7

Chapter 4 Receiving Data with Report Connections
//connect to the 1st inspection on the device “GigeVision1”
m_RepCon.Connect("GigeVision1", 1);
//wire up our event handler
m_RepCon.NewReport += m_RepCon_NewReport;
//Our event handler
void m_RepCon_NewReport(object sender,
ReportConnectionEventArgs e)
{
 //get the report from the ReportConnectionEventArgs object
InspectionReport report = e.Report;
}

We will cover the InspectionReport object and it’s contents in more detail
later on in this chapter.

Adding Records to Your Report Programmatically

When you establish a report connection, you will typically receive just the
inspection stats and the results that you selected for upload when you
were building your Job in FrontRunner. You have the option of adding
other datums to the report programatically however. You accomplish this
by using one of the overloaded versions of the DataRecordAdd method:

void DataRecordAdd(Visionscape.Steps.IDatum datumToAdd)

datumToAdd: The datum that you want to add to the list of uploaded
results.

This method adds the specified datum to the end of the list of results to
upload. It must be called after your call to Connect. You would use this
method when you are loading the Job in your application, and you can
then locate the datums you want to add. Refer to Chapter 2 and the
“Finding Steps in the Step Tree” section for more information on how to
locate steps and datums.

void DataRecordAdd(Visionscape.Devices.VsNameNode
nnForStep, string DatumName)

nnForStep: A VsNameNode object that represents the parent Step of the
datum you wish to add.

DatumName: The name of the datum to add.
4-8 Visionscape .NET Programmer’s Manual

Adding Records to Your Report Programmatically

R
ec

ei
vi

n
g

 D
at

a
w

it
h

R

ep
o

rt
 C

o
n

n
ec

ti
o

n
s

4

This method adds a datum to the list of results to upload. It must be called
after your call to Connect. The Datum is specified by passing in a
VsNameNode object that represents the parent Step, and a string that
holds the name of the Datum. You would use this method when you are
writing a monitoring application, and you do not have the actual Job
loaded in your process. Refer to Chapter 3 and the “Namespace
Information” section for more information.

void DataRecordAdd(string dataRecordPath)

dataRecordPath: A string that specifies the symbolic name of the datum
that you want to add to the report. This must be the full path to the datum,
up to its parent Snapshot Step.

This method adds a Datum to the report as specified by the
dataRecordPath parameter. This string represents the symbolic name of
the Datum you want to add. This must be the full path to the Datum, up to
its parent Snapshot Step.
Visionscape .NET Programmer’s Manual 4-9

Chapter 4 Receiving Data with Report Connections
DataRecordAdd Examples:

Consider the Job tree shown below; this is from the
ProgSample_MultiCam.avp file installed with the Visionscape VSKit.NET
Programmers Toolkit:

FIGURE 4–1. Job Tree

The Job Tree shown here is displaying the symbolic names for each Step.
The first Fast Edge Step under the second Snapshot Step is highlighted.
Let’s say we wanted to add the output edge point from this Fast Edge
Step to our list of uploaded results. The symbolic name for the “Edge
Point” datum is EdgePt (remember, you can look up the symbolic name of
any datum using the StepBrowser utility, refer to “Using StepBrowser to
Look Up Symbolic Names” on page 2-30 for details). The symbolic name
of the step is EdgeFast1, and its parent Snapshot Step’s symbolic name
is Snapshot2. So, we could make the following call to DataRecordAdd:

m_RepCon.DataRecordAdd("Snapshot2.EdgeFast1.EdgePt");
4-10 Visionscape .NET Programmer’s Manual

Adding Images to Your Report

R
ec

ei
vi

n
g

 D
at

a
w

it
h

R

ep
o

rt
 C

o
n

n
ec

ti
o

n
s

4

In this case, we specified the complete path string of the Datum. If you
have the Job loaded in memory, then you could also add the Datum by
directly passing it to DataRecordAdd, like this:

 //locate the fast edge step in our job
 Step fastedge = m_Job.FindByName("Left Fast Edge");
 //pass the EdgePt datum to DataRecordAdd
 m_RepCon.DataRecordAdd(fastedge.Datum("EdgePt"));

If you don’t know the symbolic name of the Datum you want to add, and
you don’t have the Job loaded in memory, you can still add a Datum to the
result upload list by analyzing the Namespace of the Device. You would
typically need to do this when your application is simply monitoring a
running device. The following example adds the same EdgePt datum to
the report, but does so using the Namespace information.

//Tell the VsDevice object to update its namespace information
m_dev.QueryNamespace();
//Search the Namespace for all of the Fast Edge Steps
VsNameNodeCollection fedgeNodes =
 m_dev.Namespace.SearchForType("Step.Edgefast.1");
//Loop through all of the Fast Edge Nodes
foreach(VsNameNode fedgeNode in fedgeNodes)
{
 //is this the Fast Edge step named "Left Fast Edge"?
 if(fedgeNode.UserName == "Left Fast Edge")
 {
 //Add the "EdgePt" datum of this Step to the Report
 m_RepCon.DataRecordAdd(fedgeNode, "EdgePt");
 }
}

Remember, a call to any of the DataRecordAdd functions will fail if you
have not successfully connected first.

Adding Images to Your Report

There are two ways to include images in your inspection report.

• When programming your Job in FrontRunner, go to the Inspection
Step and add the output buffer of the snapshot(s) you want to upload
to the “Select Results to Upload” list. Then, these buffers will be
Visionscape .NET Programmer’s Manual 4-11

Chapter 4 Receiving Data with Report Connections
added to the Images collection of the InspectionReport object you
receive in the NewReport event.

• Add them programmatically.

The first option should be self explanatory, so let’s focus on the second
option. In the previous section, we explained how to add datums to your
inspection report using the DataRecordAdd method. You should
understand that the images in your Job are contained within Buffer Datum
objects and are, therefore, added to the inspection report just like any
other datum. Each Snapshot Step has an output Datum named
“SnapOutputBuffer”, symbolic name “BufOut”. This datum always holds
the most recent image acquired by the Snapshot. So, the call to include
the image from a Snapshot would look something like this:

m_RepCon.DataRecordAdd("Snapshot1.BufOut");

Our assumption here is that the symbolic name of the Snapshot is
“Snapshot1”. But, what if you don’t know what the symbolic name of the
Snapshot is? What if your inspection contains multiple Snapshots, and
you want to upload the images from all of them? Not to worry,
ReportConnection provides several easy ways to add images to your
reports.

Adding All of the Snapshot Images in an Inspection to the
Report

If your application is using a JobStep to load an AVP file into memory, or
simply monitoring a running Device, there are two easy ways to add
images to your report. Simply call the appropriate version of the
AddSnapBuffers() function. This function will add to the report all of the
Snapshot Output Buffers in the Inspectin you are connected to.

int AddSnapBuffers(Visionscape.Steps.JobStep job)

job: A reference to the Job Step that is currently loaded on the Device.

This function will scan the specified Job for the Inspection that you are
currently connected to. It will then find all of the Snapshot steps witin that
Inspection, and automatically add their output buffers to the report. You
must successfully connect before calling this function. If successful, the
number of snapshot output buffers added to the report is returned, 0 is
returned on a failure.
4-12 Visionscape .NET Programmer’s Manual

Adding Images to Your Report

R
ec

ei
vi

n
g

 D
at

a
w

it
h

R

ep
o

rt
 C

o
n

n
ec

ti
o

n
s

4

int AddSnapBuffers(Visionscape.Devices.VsNameNode
devNamespace)

devNamespace: The namespace property from the Device you are
currently connected to.

This version scans the namespace for the Inspection you are currently
connected to, and will also add all of its snapshot output buffers to your
report. You must have successfully connected first. If successful, the
number of snapshot output buffers added to the report is returned, 0 is
returned on a failure.

AddSnapBuffers Examples

Assume you have the current job loaded into a JobStep named m_Job,
and you are connecting to a VsDevice object named m_dev. The
following example creates and connects a ReportConnection object, and
then adds all snapshot buffers to the report.

 //connect to the 1st inspection on this device
 m_RepCon = new ReportConnection();
 m_RepCon.Connect(m_dev);
 //Add all snapshot buffers in the inspection to the report
 m_RepCon.AddSnapBuffers(m_Job);

In this example, assume you are only monitoring a VsDevice object
named m_dev, and you do not have the Job loaded in your process. Do
the following to add all Snapshot buffers to your report:

//connect to the 1st inspection on this device
 m_RepCon = new ReportConnection();
 m_RepCon.Connect(m_dev);
//Tell the device to update it's namespace information first
 m_dev.QueryNamespace();
 //now add all snapshot buffers to the report
 m_RepCon.AddSnapBuffers(m_dev.Namespace);

Now I Have Images, How Do I Display Them?

Now that you know how to include images in your inspection reports, the
next obvious question is how to display them. The easiest and most
powerful Visionscape control for displaying images is the BufferView
control. In Visual Studio’s Toolbox, a tab should have been created by the
Visionscape installer named “Visionscape”. This tab will contain all of the
visual controls provided by Visionscape. You should find the BufferView
Visionscape .NET Programmer’s Manual 4-13

Chapter 4 Receiving Data with Report Connections
control in this tab. Drag a BufferView control onto your form and rename it
to ctlBufView (refer to Chapter 6 for a complete description of the
BufferView control).

When you receive the NewReport event, the Images collection of the
InspectionReport object will contain the images from every snapshot you
added to the report. The Images property is a collection of BufferDm
objects. Visionscape always uses the BufferDm object to represent an
image buffer. The BufferView control displays BufferDms; you simply
need to set its Buffer property to the BufferDm you wish to display. The
following example shows how you would extract the first image from your
report, and display it in the BufferView control named ctlBufView in your
NewReport event handler.

//The Event handler for the NewReport event
void m_RepCon_NewReport(object sender,
ReportConnectionEventArgs e)
{
 //get the Inspection report from the
//ReportConnectionEventArgs object

 InspectionReport report = e.Report;
 //does our report contain any images?
 if(report.Images.Count > 0)
 {
 //extract the image as a BufferDm,
 // and set it into the Buffer View
 ctlBufView.Buffer = (BufferDm)report.Images[0];
 }
}

If your report contains multiple images, then you would add multiple
BufferView controls to your form, and iterate through the Images
collection in order to display them all.

Performance Considerations

The ReportConnection is very flexible and can be deployed in a number
of ways to handle most application scenarios. How it is deployed depends
on your situation. In this section we list several important topics that
impact the performance of your ReportConnection, and your running
inspections. Keep these issues in mind when deciding how best to
configure your ReportConnections.
4-14 Visionscape .NET Programmer’s Manual

Performance Considerations

R
ec

ei
vi

n
g

 D
at

a
w

it
h

R

ep
o

rt
 C

o
n

n
ec

ti
o

n
s

4

Lossy vs Lossless

The DropWhenBusy property governs whether or not your
ReportConnection is Lossy or Lossless. When set to true, your
connection is lossy, if false, it is lossless.

Lossy: Your report connections are “lossy” by default. This means that
you will not necessarily receive a report from every inspection cycle.
Cycle reports (represented by the InspectionReport object) may be
thrown away at the end of a cycle if your application is still busy handling
the report from the previous cycle. This prevents the Inspection thread
from being blocked while it waits for you to handle the new report, and
insures that your application will not negatively impact the speed of your
inspections. You should choose a lossy connection when you don’t need
to receive data from every inspection cycle, and it is most critical that your
application not impact the speed of your inspections.

Lossless: This means that your running inspections will NOT throw away
cycle reports when your application is busy. Your inspection will block if
your application is still busy handling the previous report. This means that
your application could cause your inspections to run slower. Choose a
lossless connection when it is critical that you receive data from every
inspection cycle, and you are not concerned with the potential impact on
the inspection speed.

Don’t Spend too much time in the NewReport event handler:

For most of our customers, it is critical that their applications not impact
the speed of their vision inspections. For this reason, a lossy report
connection is most appropriate for them. However, we often hear people
say “…but I still need to get most if not all of the inspection cycle data”. In
this case, the best strategy is to spend as little time in the NewReport
event handler as possible. If your application is in the NewReport event
handler, and your Inspection completes another cycle and has a new
report for you, that report will be thrown away when you have a lossy
connection. You should try to simply grab the InspectionReport (assign it
to a member variable, put it into a List, etc) and then exit. You could then
process the reports based on a timer, or even pass them to a different
thread. The more time you spend in the NewReport event handler, the
greater the risk that you will drop reports.
Visionscape .NET Programmer’s Manual 4-15

Chapter 4 Receiving Data with Report Connections
Separate ReportConnections for Images and Results:

In all of the examples we’ve presented in this chapter, we have
demonstrated receiving both the images and the results in the same
ReportConnection. For most applications, the images are simply
displayed, and it is not critical that you receive every one. However it is
very common that the result data IS critical, and the application must
receive every cycle report. In these cases, we recommend that you create
one ReportConnection to receive images, and a separate
ReportConnection to receive Inspection results and stats. The one that
will receive images can be configured to be lossy, and the MaxRate can
be set to some appropriate value (say 2 or 4). The ReportConnection that
will receive inspection results and stats can be configured so that
MaxRate is set to 0, and DropWhenBusy is set to true (lossy) if you want
most of the results or false (lossless) if you want all of the results. In all
but a few cases, the images represent much more data than the
inspection results and stats, so it is better to throw away the images when
your application is busy and upload just the results and stats on a
separate connection.

The InspectionReport Object:

At the end of each inspection cycle, the Inspection Step will create a
report that contains the cycle data you requested from your
ReportConnection object. This raw report is then transferred to your
ReportConnection object, where it is transformed into an
InspectionReport object. So, think of the InspectionReport object as a
report on one cycle of your inspection. This report is passed to you via the
report proprety of the ReportConnectionEventArgs object in the
NewReport event. The following properties of the InspectionReport object
hold your report data:

ReportInspectionStats InspectionStats { get; }

Returns a reference to a ReportInspectionStats object that contains
information like the inspection status (pass/fail), cycle counts, timing, etc.
Refer to “ReportInspectionStats Object” on page 6-13 for a complete
description.
4-16 Visionscape .NET Programmer’s Manual

The InspectionReport Object:

R
ec

ei
vi

n
g

 D
at

a
w

it
h

R

ep
o

rt
 C

o
n

n
ec

ti
o

n
s

4

ReportMemoryInfo Memory { get; }

Returns a ReportMemoryInfo object that contains information on the
device's current memory usage. Refer to “ReportMemoryInfo” on page 6-
17 for a complete description.

ReportResultList Results { get; }

Provides access to the list of uploaded inspection results. This is a list of
InspectionReportValue objects, which are objects that represent a single
inspection result. There will be one InspectionReportValue object in the
list for every result selected for upload. The following sample
demonstrates how you might access the results in this list:

void m_RepCon_NewReport(object sender,
ReportConnectionEventArgs e)
{
 //get the Inspection report
 InspectionReport report = e.Report;
//iterate through all of the results
 foreach(InspectionReportValue val in report.Results)
 {
 Console.WriteLine("Result Type: " + val.Type);
 }
 //access individual results
 InspectionReportValue rec = report.Results[0];
 InspectionReportValue rec2 = report.Results[2];
}

Refer to “InspectionReportValue Object” on page 6-16 for a complete
description of the contents of this object.

BufferDmList Images { get; }

A list of BufferDm objects. This collection holds all image buffers that were
added to the report, if any. The default report connection does not contain
images, so this collection will be empty unless you have added images to
the report. Refer to the previous section “Adding Images to your Report”
for a description of how to do this.
Visionscape .NET Programmer’s Manual 4-17

Chapter 4 Receiving Data with Report Connections
InspectionReport also provides the following useful properties and
methods:

IEnumerable<InspectionReportValue> GetResults(string
typeString)

typeString: The type of datum you want to retrieve.

This method allows you to iterate through only the results that are of a
certain type. The typeString is used to specify the Datum type you want to
retrieve. The following example demonstrates how you might iterate
through only the Status datums in your result list:

 foreach(InspectionReportValue val in
report.GetResults("Status"))
 {
 Console.WriteLine(val.Name + " : " + val.NameSym);
 Console.WriteLine("Status Value = " + val.AsBool);
 }

double TimeStamp { get; }

Returns the timestamp from when report was created.

string
ReportString(Visionscape.Communications.ReportLogOptions
logOptions).

This function converts your report data into a string based on the options
you specify in the logOptions parameter. Refer to “Logging Results to
File” on page 4-14 for a complete description of the ReportLogOptions
object.

bool FileSave(string bszName)
bool FileLoad(string bszName)

bszName: File path to which report should be saved/loaded.

These two methods allow you to save and reload inspection reports to
disk. The entire contents of the report, including images, will be saved.
4-18 Visionscape .NET Programmer’s Manual

ReportInspectionStats Object

R
ec

ei
vi

n
g

 D
at

a
w

it
h

R

ep
o

rt
 C

o
n

n
ec

ti
o

n
s

4

ReportInspectionStats Object

The properties of this object provide information on the inspection you are
connected to, the cycle counts, inspection timing, overruns, buffer usage,
etc. A description of each property follows:

ReportSnapshotInfo[] Snapshot { get; }

Returns an array of ReportSnapshotInfo objects, one for each of the
snapshots in the inspection. The ReportSnapshotInfo contains the
following information for each snapshot.

int BufferPoolCount { get; }

The size of the buffer pool.

int BufferPoolUsed { get; }

The number of buffers being used.

int CameraTimeouts { get; }

Contains a count of the number of camera timeout errors for this
snapshot.

int FifoOverruns { get; }

Contains a count of the number of Fifo Overrun errors for this snapshot.

int ProcessOverruns { get; }

Contains a count of the number of Process Overrun errors for this
snapshot.

int TriggerOverruns { get; }

Contains a count of the number of Trigger Overrun errors for this
snapshot.

int CycleCount { get; }

This property returns inspection cycle count.

int CycleTime { get; }

This property returns Cycle time in msecs.
Visionscape .NET Programmer’s Manual 4-19

Chapter 4 Receiving Data with Report Connections
int CycleTimeMax { get; }

This property returns the maximum cycle time in msecs.

int DrawTime { get; }

This property returns the time in msecs spent creating graphics metafile.

int FailedCount { get; }

This property returns the number of failed inspections.

int IdleTime { get; }

This property returns the idle time in msecs.

int PartQueueSize { get; }

Read-only. The current number of entries in the Part Q.

int PartQueueSizeMax { get; }

Read-only. The maximum Size of the Part Q.

bool Passed { get; }

True if inspection passed, False if inspection failed.

int PassedCount { get; }

This property returns the number of passed inspections.

int ProcessTime { get; }

This property returns the processing time in msecs (time spent in
inspection processing images).

int ProcessTimeMax { get; }

This property returns the maximum processing time.

int RatePPM { get; }

This property returns the Inspection rate as parts per minute.
4-20 Visionscape .NET Programmer’s Manual

InspectionReportValue Object

R
ec

ei
vi

n
g

 D
at

a
w

it
h

R

ep
o

rt
 C

o
n

n
ec

ti
o

n
s

4

int RatePPMMax { get; }

This property returns the maximum Inspection rate as parts per minute.

InspectionReportValue Object

This object wraps a single result in the list of uploaded results. You are
provided with properties that allow you to access the result data, its name,
its error code, etc. The result data can be of any type, including array
data, so various accessor properties are provided that will return the data
to you as the correct type, rather than just return an object type.

bool Calibrated { set; get; }

Gets/Sets whether values should be returned in calibrated units or in
pixels. Set to True, and when you use one of the value access properties
(AsDistance, AsPoint, etc), your value will be returned in calibrated units.
Please note, you must have calibrated your inspection in order for this
property to have any effect. If this value is set to False, or the inspection
has not been calibrated, all value accessors will return their values in
pixels.

string Type { get; }

Gets the type of the uploaded result. This is a string which identifies the
type of datum. You can use this value to determine which of the accessor
methods you should use:

 InspectionReportValue rec5 = report.Results[5];
 if (rec5.Type == "Distance")
 {
 Console.WriteLine(rec5.AsDistance.Dist);
 }

bool Is1DArray { get; }
bool Is2DArray { get; }

These properties allow you to test if the value contains 1 dimensional or 2
dimensional data.
Visionscape .NET Programmer’s Manual 4-21

Chapter 4 Receiving Data with Report Connections
int Error { get; }

This property returns the error code of the datum. This will be 0 when the
Step ran successfully, non-zero indicates an error. In many cases, an
error will mean that the data was not updated, so you should not trust the
data if Error is non-zero.

string Name { get; }

This property returns the user name of the datum that generated this
record. Will be in the form Step.Datum.

string NameSym { get; }

This property returns the symbolic name of the datum that generated this
record. It will be in the form Step1.Dm.

object AsObject { get; }

Returns the value of the uploaded result as an object.

The following properties all provide type specific access to the
result data:

bool AsBool { get; }

Returns the value of the uploaded datum as a boolean. This would
typically be used for Status Datums. A WrongTypeException will be
thrown if the result’s data is not boolean.

int AsInt { get; }

Returns the value of the uploaded datum as an integer. A
WrongTypeException will be thrown if the result’s data is not an integer.

double AsDouble { get; }

Returns the value of the uploaded datum as a double. This property can
be used to extract the data from any result that produces a scalar floating
point value, such as Distance, Angle, Area and of course Double. A
WrongTypeException will be thrown if the result’s data is not floating
point.
4-22 Visionscape .NET Programmer’s Manual

InspectionReportValue Object

R
ec

ei
vi

n
g

 D
at

a
w

it
h

R

ep
o

rt
 C

o
n

n
ec

ti
o

n
s

4

string AsString { get; }

Returns the value of the uploaded datum as a string.

A WrongTypeException will be thrown if the result is not a String Datum.
This property does not attempt to convert numeric values to strings. To do
that, use the AsObject accessor, and call the standard ToString() method:

string strdis = rec.AsObject.ToString();

double[] As1DDoubleArray { get; }

Returns the value of the uploaded datum as a 1 dimensional array of
doubles. This property can be used to extract the data from any Datum
that produces a one dimensional array of values, like Points and Lines for
example. A WrongTypeException will be thrown if the result’s data is not
represented by a 1 dimensional array.

double[,] As2DDoubleArray { get; }

Returns the value of the uploaded datum as a 2 dimensional array of
doubles. This property can be used to extract the data from any Datum
that produces a two dimensional array of values, like BlobTrees, DMR
Results and OCV Results for example. A WrongTypeException will be
thrown if the result’s data is not represented by a 2 dimensional array.

ReportLine AsLine { get; }

Returns the uploaded value in the form of a ReportLine object, which
provides individual properties to access the A, B and C elements of the
line equation (Ax + By + C = 0).

//extract the 3rd result from the InspectionReport object
//'report'
 InspectionReportValue rec = report.Results[2];
 ReportLine line = rec.AsLine;
 //access the individual elements of the line equation
 double A = line.A;
 double B = line.B;
 double C = line.C;

A WrongTypeException will be thrown if the result is not a LineDm.
Visionscape .NET Programmer’s Manual 4-23

Chapter 4 Receiving Data with Report Connections
ReportPoint AsPoint { get; }

Returns the uploaded value in the form of a ReportPoint object, which
provides individual properties to access the X, Y, Scale and Angle values
of the point.

//extract the 3rd result from the InspectionReport object
//'report'
 InspectionReportValue rec = report.Results[2];
 ReportPoint pt = rec.AsPoint;
 //access the individual elements of the point
 double X = pt.X;
 double Y = pt.Y;
 double Angle = pt.Angle;
 double Scale = pt.Scale ;

A WrongTypeException will be thrown if the result is not a PointDm.

ReportDistance AsDistance { get; }

Returns the uploaded value in the form of a ReportDistance object, which
provides the Dist property to return the distance value as a double.

//extract the 3rd result from the InspectionReport object
//'report'
 InspectionReportValue rec2 = report.Results[2];
 //get the distance value
 double theDistance = rec2.AsDistance.Dist;

A WrongTypeException will be thrown if the result is not a DistanceDm.

ReportAngle AsAngle { get; }

Returns the uploaded value in the form of a ReportAngle object, which
provides an Angle property to return the angle value as a double.
//extract the 3rd result from the InspectionReport object
//'report'
 InspectionReportValue rec2 = report.Results[2];
 //get the angle value
 double theAngle = rec2.AsAngle.Angle;

A WrongTypeException will be thrown if the result is not an AngleDm.

ReportArea AsArea { get; }

Returns the uploaded value in the form of a ReportArea object, which
provides an Area property to return the area value as a double.
4-24 Visionscape .NET Programmer’s Manual

InspectionReportValue Object

R
ec

ei
vi

n
g

 D
at

a
w

it
h

R

ep
o

rt
 C

o
n

n
ec

ti
o

n
s

4

//extract the 3rd result from the InspectionReport object
//'report'
 InspectionReportValue rec2 = report.Results[2];
 //get the area value
 double theArea = rec2.AsArea.Area;

A WrongTypeException will be thrown if the result is not an AreaDm.

ReportBlobTree AsBlobTree { get; }

Use this property to retrieve the result data when uploading the Blob Tree
from a Blob Step. The data is returned in the form of a ReportBlobTree
object. You can loop through all of the blobs in the tree and analyze their
contents as shown in the sample below:

if(rec.Type == "BlobTree")
 {

ReportBlobTree btree = rec.AsBlobTree;
 foreach(ReportBlob blob in btree)
 {//The ReportBlob object provides property access to

// all blob data
 double fval = blob.XCenter;
 fval = blob.YCenter;
 int nval = blob.Color;
 fval = blob.UnrotWidth;
 }

}

A WrongTypeException will be thrown if the result is not a BlobTreeDm

ReportDMR[] AsDMRResults { get; }

Use this property when you are uploading the SymResults datum from a
Data Matrix tool. It returns an array of ReportDMR objects, one for every
Data Matrix decoded by the DMR tool. The ReportDMR object provides
property access the DMR result data.

A WrongTypeException will be thrown if the result is not a DMRResults
datum.

ReportBCR[] AsBCRResults { get; }

Use this property when you are uploading the SymResults datum from a
Bar Code tool. It returns an array of ReportBCR objects, one for every
Barcode decoded by the tool. The ReportBCR object provides property
access to the decoded barcode result data.
Visionscape .NET Programmer’s Manual 4-25

Chapter 4 Receiving Data with Report Connections
A WrongTypeException will be thrown if the result is not a DMRResults
datum.

ReportMemoryInfo object:

This object provides information on the state of a remote Device's
memory. You should understand that the data in this object is only valid
when dealing with a smart camera (Vision HAWK, for example). The data
is not valid when dealing with host based devices, (GigE and Soft
Systems) as your inspections are running under Windows in that case,
and there are many Windows API calls available that will provide you with
information on the current state of PC memory. The properties of this
object provide the following information:

int Available { get; }

This property returns the size in bytes of available memory in the general
memory heap.

int Contiguous { get; }

This property returns the size in bytes of the largest contiguous block of
memory in the general heap.

int Frags { get; }

Read-only. This property returns the number of memory fragments in the
general memory heap.

int Size { get; }

This property returns the overall size in bytes of the general memory
heap.

int Used { get; }

This property returns the size in bytes of the amount of used general
memory.

int UsedMax { get; }

This property returns the maximum general memory used ever (in bytes).
4-26 Visionscape .NET Programmer’s Manual

Handling Reports on Separate Threads

R
ec

ei
vi

n
g

 D
at

a
w

it
h

R

ep
o

rt
 C

o
n

n
ec

ti
o

n
s

4

Handling Reports on Separate Threads

The .NET languages make it relatively easy to create multi-threaded
programs. In general, multi-threading should be avoided unless
absolutely necessary. Issues such as thread synchronization and thread
deadlocks make your program considerably more complex than a single
threaded implementation. That being said, there are many times when a
multi-threaded approach is the best solution to performance issues. In a
Visionscape .NET application, the most likely reason you would want to
use multiple-threads would be to handle your report connections. C# and
VB.NET provide all of the functionality you need to do this. You need to
understand a couple of things:

1. In order to receive the NewReport even on a separate thread, your
ReportConnection object must be instantiated in that thread.

2. If you need to display the results or images in the report, you can
NOT access the controls on your Form from your worker thread, this
is not allowed by .NET. You will need to create a delegate, and Invoke
it from your thread in order to callback to the Form on the main
thread.

Item 2 above is perhaps the most complicated issue. If you are not
displaying the contents of your reports, then you do not need to worry
about this. But most people want to display their results and images, so in
this section we will demonstrate how you might handle the NewReport
event on a separate thread, and then pass the report data back to the
owning Form on the main thread.

Create the ThreadedResults Class

We will create a class that will do the work of creating our report
connection on a separate thread, and handling the NewReport event.
This class assumes that you’ve already loaded a job, and downloaded it
to the device. The constructor of this class will take two arguments:

ISynchronizeInvoke owner:
NewReportDelegate receiveResultsDelegate

The Form class in C# implements the ISynchronizeInvoke interface. We
can use this interface to “Invoke” a function in our main form, but the
function will run in the main thread context, allowing us to access the
controls on the form. The function that we will invoke is specified by the
Visionscape .NET Programmer’s Manual 4-27

Chapter 4 Receiving Data with Report Connections
NewReportDelegate which we will define in our class. Our class looks like
this:

class ThreadedResults
{
 //member variables
 private VsDevice _device;
 private int _inspIndex;
 private ReportConnection _repcon;
 private Thread _thread;
 private bool _bConnected = false;
 private ISynchronizeInvoke _owner;
 public AutoResetEvent _connectComplete = new
AutoResetEvent(false);
 //define the delegate that will be used to callback to

//owner form
 public delegate void NewReportDelegate(InspectionReport
report,
 int inspIndex);
 private NewReportDelegate _notifyOwner;
 //constructor takes a reference to the form and a ref
 //to the callback function(delegate)
 public ThreadedResults(ISynchronizeInvoke owner,
 NewReportDelegate receiveResultsDelegate)
 {
 _owner = owner;
 _notifyOwner = receiveResultsDelegate;
 }
 public bool Connect(VsDevice dev, int inspindex)
 {
 _device = dev;
 _inspIndex = inspindex;

//create thread to handle our results
 if(_thread == null)
 _thread = new Thread(ThreadedConnect);
 else
 {
 _thread.Abort();
 }
 //start the thread
 _connectComplete.Reset();
 _thread.Start(this);
 //wait for the function to complete, so we can return

//the status
 _connectComplete.WaitOne();

4-28 Visionscape .NET Programmer’s Manual

Handling Reports on Separate Threads

R
ec

ei
vi

n
g

 D
at

a
w

it
h

R

ep
o

rt
 C

o
n

n
ec

ti
o

n
s

4

 return _bConnected;
 }
 public void Disconnect()
 {
 if(_thread != null)
 _thread.Abort();
 if(_repcon != null && _repcon.IsConnected)
 _repcon.Disconnect();
 }
 private void ThreadedConnect(object obj)
 {
 if (_repcon != null && _repcon.IsConnected)
 _repcon.Disconnect();
 else
 _repcon = new ReportConnection();
 try
 { //Connect our report connection
 _repcon.Connect(_device, _inspIndex);
 //wire up the delegate
 _repcon.NewReport += _repcon_NewReport;
 //try to add all of the snapshot buffers to our

//report
 //Tell the device to update it's namespace

//information first
 _device.QueryNamespace();
 //now add all snapshot buffers to the report
 _repcon.AddSnapBuffers(_device.Namespace);
 _bConnected = true;
 }
 catch (Exception)
 {
 _bConnected = false;
 }
 //signal that connection is complete
 _connectComplete.Set();
 }
 //The NewReport event. This will be received on a

//separate thread
 void _repcon_NewReport(object sender,
ReportConnectionEventArgs e)
 {
 if (_owner != null)
 { //Pass the report back to our owning form by
//invoking the delegate that was passed in
 object[]args = { e.Report, _inspIndex};
 _owner.Invoke(_notifyOwner, args);
Visionscape .NET Programmer’s Manual 4-29

Chapter 4 Receiving Data with Report Connections
 }
 }

Use the ThreadedResults Class in the Form

Add the following member variables to your Form class:

private object _synchObject = new object();
private ThreadedResults _resultHandler;

We will use _synchObject for synchronization, to insure that multiple
threads don’t access our callback function simultaneously.

We need to create a function in our main form that matches the signature
of the NewReportDelegate delegate defined in the
ThreadedResultsClass. This function will be called whenever the thread
has a new report to be displayed. So add the following function to your
main form:

public void ReceiveResults(InspectionReport report, int
inspIndex)
{
 //prevent multiple threads from coming in here

//simultaneously
 lock(_synchObject)
 {
 if(report.Images.Count > 0)
 {
 BufferDm buf = report.Images[0];
 ctlBufView.Buffer = buf;
 }
 }
}

Lastly, we need to instantiate and connect our ThreadedResults object.
So add the following code where you are currently connecting your
ReportConnection:

//create the ThreadedResults object,
// Form implements the ISynchronizeInvoke interface, so we
//pass “this”
//as the first argument, and our callback function as the 2nd
 _resultHandler = new ThreadedResults(this,
ReceiveResults);
 //connect, passing in a reference to the device (m_dev),
 //and the index of the inspection we are connecting to.
4-30 Visionscape .NET Programmer’s Manual

Report Queue Connections

R
ec

ei
vi

n
g

 D
at

a
w

it
h

R

ep
o

rt
 C

o
n

n
ec

ti
o

n
s

4

 _resultHandler.Connect(m_dev, 1);

Your application will now receive the NewReport event on a separate
thread, allowing you to perform time consuming tasks, and you can pass
the report safely back to the main thread so that you can display your
images and data.

Report Queue Connections

Note: If you are unfamiliar with the Part Queue, see the Visionscape
FrontRunner User’s Manual for more information.

The ReportQueueConnection object retrieves Part Queue data from a
running inspection. When programming your inspection in FrontRunner,
you must enable the Part Queue, set its size, and set the type of data you
want to queue up. Once running, the inspection will then queue up
images, results or both based on your settings. A typical scenario is
where a user wishes to queue up the last 20 failed images. If you wish to
retrieve this Part Queue data in your application, then you would use the
ReportQueueConnection object, which is used in a manner that is very
similar to the ReportConnection object. Generally, you would follow these
steps:

1. Instantiate a ReportQueueConnection object, and connect it to the
Inspection using the Connect method.

2. Use the Summary method to determine if there are any records in the
Part Queue.

3. If any, retrieve them all using the RecordGetAll method, which returns
you an InspectionReportList object, which is a list of InspectionReport
objects, which we have already covered at length.

Here is an example function demonstrating how you might retrieve the
Part Queue from a specified inspection on a specified device:

private int UploadPartQ(VsDevice dev, int inspIndex)
{
 int qSize = 0;
 //Create and connect our ReportQueueConnection object
Visionscape .NET Programmer’s Manual 4-31

Chapter 4 Receiving Data with Report Connections
 ReportQueueConnection qconn = new
ReportQueueConnection();
 bool bRes = qconn.Connect(dev, inspIndex);
 if(bRes)
 {
 //get the summary
 ReportQueueSummary summary = qconn.Summary();
 //are there any entries in the Q currently?
 if(summary.CurrentEntries > 0)
 {
 //yes, so upload them
 InspectionReportList replist =
qconn.RecordGetAll();
 qSize = replist.Count;
 //cycle through all of the report records
 int i = 0;
 foreach(InspectionReport report in replist)
 {
 //do something with the results...
 foreach(InspectionReportValue value in
report.Results)
 {
 //...????....
 }

 //save all the images to disk
 foreach(BufferDm buf in report.Images)
 {
 ++i;
 buf.SaveImage("C:\Image" + i + ".tif",
 EnumImgFileType.ftTIF);

 }
 }
 }
 }
 return qSize; //return the number of records uploaded
}

Visionscape provides a control that can be used to view the contents of
the InspectionReportList. The QueueView control is contained in the
Visionscape.Display.Runtime.Dll library. You simply pass the
InspectionReportList object to the control, and you can view all of the
images and results. You could easily create your own Report Queue
4-32 Visionscape .NET Programmer’s Manual

ReportQueueConnection Object

R
ec

ei
vi

n
g

 D
at

a
w

it
h

R

ep
o

rt
 C

o
n

n
ec

ti
o

n
s

4

viewer by adding a BufferView to a form (for image display) and any
controls you wish to display the results.

ReportQueueConnection Object

Let’s take a closer look at the methods and properties of this object,
starting with the Connect method:

bool Connect(Visionscape.Devices.VsDevice dev, int InspIndex)

dev: The device you are connecting to.

InspIndex: Specifies the 1 based index of the inspection you want to
connect to.

Connects to the specific Inspection on the given device. Returns true if
connected successfully, false if not.

void Disconnect()

Disconnects from the device.

ReportQueueSummary Summary()

Retrieves a summary of the current queue state. The data is returned in a
ReportQueueSummary object if successful, null is returned if the
Summary could not be retrieved.

InspectionReportList RecordGetAll()

Retrieves all the records in the Part Queue. They are returned in the form
of an InspectionReportList object, which is simply a list of
InspectionReport objects. Each record will contain the images, results
and stats from the inspection cycle in which it was entered into the Part
Queue. The Part Queue is cleared after this call.

InspectionReport RecordGetAt(int indexOrCycleCount)

Returns a single Part Queue Record by index or by cycle count. The
index is 0 based. If specifying a cycle count, you must pass a negative
number. The record is returned as an InspectionReport object. The record
is NOT removed from the Part Queue when you retrieve it with this
function.
Visionscape .NET Programmer’s Manual 4-33

Chapter 4 Receiving Data with Report Connections
InspectionReportList RecordGetRange(int first, int last)

Retrieves all of the part queue records in the specified range. The first
and last parameters are 0 based indexes into the queue. The records are
removed from the queue after they are uploaded.

void RecordClearAll()

Clears the Part queue on the device without uploading it.

bool Connected { get; }

Read-only. This property returns True when connected.

int InspIndex { get; }

Read-only. This property returns the Inspection Index passed in to
Connect(). Returns -1 if not connected.

VsDevice Device { get; }

Read-only. This property returns the device that the object is connected
to. Returns null if no connection.
4-34 Visionscape .NET Programmer’s Manual

5

I/O
 C

ap
ab

ili
ti

es

5

CHAPTER 5 I/O Capabilities

The IOConnection Object

The IOConnection object allows you to connect to any Visionscape
Device for the purpose of interfacing with its I/O. You can read and write
to any type of I/O point or block of points, including Physical and Virtual
I/O. You can also receive transition events notifying you of I/O state
changes. The IOConnection object is part of the
Visionscape.Communications namespace.

Assembly Names: Visionscape.dll & Visionscape.Communications.dll
Namespace: Visionscape.Communications

To access the IOConnection object in your .NET project, add the following
.NET references to your project:
Visionscape

Visionscape.Communications

Add the following statement to the top of your C# files in order to make
access to this namespace easier (all sample code in this chapter
assumes the following statement is present):
using Visionscape.Communications;
Visionscape .NET Programmer’s Manual 5-1

Chapter 5 I/O Capabilities
I/O Basics

The IOConnection object allows you to interface to both Physical I/O and
Virtual I/O.

Physical I/O: Actual, physical I/O points that can be wired to an external
logic controller. The amount of physical I/O that is available is determined
by the hardware that you are using.

Virtual I/O: This is software I/O, that has no physical representation.
There are 2048 Virtual I/O points, and these points are global. By global
we mean that the Virtual I/O is shared across all Devices.

The type of I/O that is supported depends on the type of Visionscape
Device you are using:

Smart Cameras: Support both Virtual I/O and Physical I/O.

GigE Systems: Support Virtual I/O only. However, if you use the
Visionscape PCIe Digital I/O board, the inputs and outputs on that board
will be mapped to Virtual I/O points. This means that you can use Virtual
I/O points to read and write the physical I/O points on the Visionscape
Digial I/O board. The I/O is mapped as follows:

Software Systems: Support only Virtual I/O.

How to Use IOConnection

To get and set I/O values in Visionscape, you simply need to instantiate
an IOConnection object, and connect it to the Device whose I/O you wish
to control by calling the Connect method. Once connected, use the
PointRead function to read I/O, and the PointWrite function to write I/O. If
you wish to receive events notifying you of I/O transitions, then you will
need to handle the IOTransition event. The following sample code
demonstrates how you might use the IOConnection object:

Type Digital I/O Board Mapped to Virtual I/O
Points

Inputs I/O Points 1 - 16 161 - 176

Outputs I/O Points 17 - 32 177 - 192
5-2 Visionscape .NET Programmer’s Manual

How to Use IOConnection

I/O
 C

ap
ab

ili
ti

es

5

//declare our global IOConnection object

private IOConnection m_IO = new IOConnection();

private void frmMain_Load(object sender, EventArgs e)

{

//Your app initialization code goes here…

 //Connect to the device like this,

 //(assume that our VsDevice variable is named 'm_dev')

 m_IO.Connect(m_dev);

 //wire up our delegate to handle the IOTransition event

 m_IO.IOTransition += m_IO_IOTransition;

//We can now get and set IO values

//Read the value of Virtual IO 1 (0 based index)

 bool vioState = m_IO.PointRead(VsIoType.Virtual, 0);

 //Turn Virtual IO 2 on

 //(if not type is specified, Virtual IO is default)

 m_IO.PointWrite(1,true);

 //Read the value of Physical IO 8

 bool phyState = m_IO.PointRead(VsIoType.Physical, 7);

 //Turn physical IO 9 OFF

 m_IO.PointWrite(VsIoType.Physical, 8, false);

}

//this function will pulse the specified virtual IO point,

//this could be used to generate a software trigger

private void GenerateVirtualTrigger(int ioNum)

{

 if(m_IO.IsConnected())

 {

 //turn it on

 m_IO.PointWrite(ioNum, true);
Visionscape .NET Programmer’s Manual 5-3

Chapter 5 I/O Capabilities
 //turn it off

 m_IO.PointWrite(ioNum, false);

 }

}

//Our Event Handler for the IOTransition event

void m_IO_IOTransition(object sender, IOConnectionEventArgs
e)

{

 //check the type of the IO

 switch(e.IoType)

 { //dump a message displaying the io number and its
state

 case VsIoType.Virtual:

 Console.WriteLine("Virtual IO " + e.IoNum + " is
" +

(e.On ? "ON" : "OFF"));

 break;

 case VsIoType.Physical:

 Console.WriteLine("Physical IO " + e.IoNum + " is
" +

(e.On ? "ON" : "OFF"));

 break;

 default:

 break;

 }

}

In the above example code, we instantiated the IOConnection object in
the Form_Load event, connected it to our chosen Device, and wired up a
delegate to handle the IOTransition event. We then created a
GenerateVirtualTrigger() function that will toggle a specified Virtual I/O
point on and off. If your running inspection was set up to be triggered by a
Virtual I/O point, then this routine would, in fact, generate a trigger, and
cause your inspection to run for one cycle. Lastly, we showed the
IOTransition event handler. This event passes you an
IOConnectionEventArgs value, which contains properties to query the
type, index and current state of the I/O point whose state has just
changed. We simply put in some code to dump a message to the Debug
window identifying the source of the transition.
5-4 Visionscape .NET Programmer’s Manual

Properties and Methods of IOConnection

I/O
 C

ap
ab

ili
ti

es

5

Properties and Methods of IOConnection
bool Connect(Visionscape.Devices.VsDevice dev)

This method will connect your object to the specified VsDevice object.
Returns true if successful, false if not. Once connected, you can read and
write I/O values.

bool IsConnected()

Returns true if the object is currently connected to a Device, false if not.

bool Disconnect()

Disconnects the IOConnection object from the Device.

void EnableTransitions(int ioNum, int ioCount)
void DisableTransitions(int ioNum, int ioCount)

These two functions allow you to enable or disable I/O transition events
for a range of Virtual I/O points.

bool PointRead(VsIoType ioType, int ioNum)

Reads the current state for the I/O of the specified type and index. The
ioNum parameter is a 0 based index.

bool PointRead(int ioNum)

This overloaded version of PointRead will read the current state of the
specified Virtual I/O value.

void PointWrite(VsIoType ioType, int ioNum, bool bOn)

Sets the specified I/O Point to the specified state. The type and index of
the I/O point are specified by ioType and ioNum. If bOn is true, the I/O
point is turned on, if it is false, the I/O point is turned off.

void PointWrite(int ioNum, bool bOn)

This overloaded version of PointWrite sets the specified Virtual I/O point
to the state specified by bOn.

bool[] BlockRead(int ioNum, int ioCount)
bool[] BlockRead(VsIoType ioType, int ioNum, int ioCount)

ioNum: The 0 based index of the starting I/O point.
ioCount: The number of I/O points to read.
ioType: The type of I/O to read.
Visionscape .NET Programmer’s Manual 5-5

Chapter 5 I/O Capabilities
The BlockRead functions allow you to read a range of I/O points all at
once. An array of Boolean values is returned that will hold the state of
each of the I/O points. One version allows you to specify the type of I/O
you want to read, while the other defaults to Virtual I/O.

void BlockWrite(int ioNum, bool[] boolArray)
void BlockWrite(VsIoType ioType, int ioNum, bool[] boolArray)

ioNum: The 0 based index of the starting I/O point.
boolArray: This is the array of Boolean values that will be written.
ioType: The type of I/O to be written.

The BlockWrite functions allow you to write a range of I/O points all at
once. You specify the starting I/O point, and a Boolean array of values to
be written. The size of the array determines how many I/O points are
written. One version allows you to specify the type of I/O you want to
write, while the other defaults to Virtual I/O.

int StartTrigger(int ioNum, int pulseInterval)
int StartTrigger(int ioNum, int pulseInterval, int pulseWidth, bool
pulseLowToHigh)

ioNum: 0 based index of the Virtual I/O point to pulse.
pulseInterval: Time in milliseconds between pulses.
pulseWidth: Time that I/O point should stay on before turning off.
pulseLowToHigh: Set to true if you want a low to high pulse, false if you
want high to low.

The StartTrigger functions can be used to pulse a specified Virtual I/O
point at a specified time interval. This can be used to simulate triggers in a
real-world application. The functions return a trigger ID value that you will
use to stop the timer, a 0 is returned if unable to start the timer. You may
start up to 4 trigger pulses simultaneously.

void StopTrigger(int idTimer)

Stops the timer specified by the idTimer value. This is the trigger ID value
returned by the StartTrigger function.

Events

IOTransition: This event is fired when a transition has occurred on a
specific I/O point.
5-6 Visionscape .NET Programmer’s Manual

Events

I/O
 C

ap
ab

ili
ti

es

5

Event Handler Function Signature:

void IOTransition(object sender,
IOConnectionEventArgs e)

The IOConnectionEventArgs parameter holds the following key
properties:

VsIoType IoType: This enum value identifies the type of the I/O point that
changed state.

int IoNum: This is the 0 based index of the I/O point that has changed
state.

bool On: Holds the current state. If true, the point is ON, if false, it is OFF.
Visionscape .NET Programmer’s Manual 5-7

Chapter 5 I/O Capabilities
5-8 Visionscape .NET Programmer’s Manual

6

Im
ag

e
D

is
p

la
y

C
o

n
tr

o
ls

6

CHAPTER 6 Image Display Controls

Visionscape provides several controls that make it easy to display the
images from your inspections. In this chapter we will cover the controls
contained with the Visionscap.Display.Image.DLL library.

Assembly Name: Visionscape.Display.Image

Namespace: Visionscape.Display

Controls:

BufferView: A simple control to display an image. Also provides scrolling
and zooming capabilities.

Filmstrip: A control to display a running “filmstrip” of the last n images.

Adding the Controls to the Visual Studio Toolbox

If Visual Studio 2008 was installed on your PC at the time when you
installed Visionscape, then all of the visual controls should have been
added to a “Visionscape” tab in the Visual Studio Toolbox. If you installed
Visual Studio 2008 after installing Visionscape, then you can install the
controls to your Toolbox by running our VsToolboxInstall.exe utility:

Start -> Programs -> Microscan Visionscape -> Tools -> Install Controls to
Visual Studio Toolbox
Visionscape .NET Programmer’s Manual 6-1

Chapter 6 Image Display Controls
This will install all Visionscape controls to the Toolbox. If you prefer to only
install the controls that you need, you can always install the controls
manually by simply dragging the DLL and dropping it on the Toolbox.
Assuming you have installed Visionscape to the folder C:\Vscape, go to
the folder C:\Vscape\Assembly\Display, and find the file
visionscape.display.image.dll:

The BufferView Control

The BufferView control is used to display images. This is perhaps the
most commonly used control, and it is very easy to use. The BufferView
control displays BufferDm objects. In Visionscape, the BufferDm (Buffer
Datum) object is used to represent an image. To dispay an image in the
BufferView control, you simply need to assign a BufferDm to its Buffer
property. To add this control to your form, simply open the Visionscape tab
on the Visual Studio Toolbox, select BufferView, and drag it to your Form.
In chapter 4, we demonstrated how to setup a ReportConnection to
receive images via the NewReport event. Following is that sample where
we retrieve the 1st image contained in the uploaded InspectionReport,
and then display that image in a BufferView control named ctlBufView:

//The Event handler for the NewReport event

void m_RepCon_NewReport(object sender,
ReportConnectionEventArgs e)

{

 //get the Inspection report from the
//ReportConnectionEventArgs object

 InspectionReport report = e.Report;
6-2 Visionscape .NET Programmer’s Manual

The BufferView Control

Im
ag

e
D

is
p

la
y

C
o

n
tr

o
ls

6

 //does our report contain any images?

 if(report.Images.Count > 0)

 {

 //extract the image as a BufferDm,

 //and set it into the Buffer View

 ctlBufView.Buffer = (BufferDm)report.Images[0];

 }

}

That’s all there is to it. The BufferView control also provides methods to
control the scrolling and zooming of the image. Following is a complete
list of all methods and properties provided by the BufferView control:

bool AutoZoom { set; get; }

Gets/Sets the autozoom state of the control. When true, the control will
automatically scale the image to fit within its bounds. Set this property to
false when you want to control the zooming yourself.

long ZoomIn()

Zooms the image in by increasing the scale by a factor of 2. The resulting
scale factor is returned. Has no effect if AutoZoom is true.

long ZoomOut()

Zooms the image out by decreasing the scale by a factor of 2. The
resulting scale factor is returned. Has no effect if AutoZoom is true.

long ZoomTo(int scaleNumerator, int scaleDenominator)

Zooms the image to the specified scale factor. The scale factor is
specified by passing the numerator and denominator of the value you
wish to be applied. Has no effect if AutoZoom is true.

 //turn off autozoom

 ctlBufView.AutoZoom = false;

 //zoom to 1/3 the size

 ctlBufView.ZoomTo(1, 3);

 //zoom to 3x the size

 ctlBufView.ZoomTo(3, 1);
Visionscape .NET Programmer’s Manual 6-3

Chapter 6 Image Display Controls
double ZoomFactor { set; get; }

Gets/sets the current zoom factor.

long ScrollTo(int x, int y)

Scrolls the image such that image is displayed with the input point (x,y) at
the upper left corner of the view.

int ScrollPositionX { set; get; }

int ScrollPositionY { set; get; }

These properties get/set the current X and Y scroll position. This is the
position of the image at the upper left corner of the view.

bool ShowStatusBar { set; get; }

When true, the status bar at the bottom of the control is shown. If false, it
is hidden.

long OpenImage(string strFilename)

Opens the specified image file and displays it in the control. This only
works with images of type TIFF and Bitmap.

The Filmstrip Control

The Filmstrip control can also be used to display images. It differs from
the BufferView in that it displays a running “filmstrip” of the last n images
that were displayed in the control. The images in the Filmstrip are always
6-4 Visionscape .NET Programmer’s Manual

The Filmstrip Control

Im
ag

e
D

is
p

la
y

C
o

n
tr

o
ls

6

autosized, there is no ability to scroll or zoom the images as there is in the
BufferView control. The layout of the filmstip depends upon the
dimensions of the control. If you want a vertical filmstrip, make your
control tall and thin, as shown below:

If you want a horizontal filmstrip, make your control short and wide, as
shown below:
Visionscape .NET Programmer’s Manual 6-5

Chapter 6 Image Display Controls
If you size the control to be more “square”, then it will display a large
version of the most recent image with a filmstrip running across either the
right or bottom edge of the screen, depending on the height to width ratio
of the control.

Just like the BufferView control, the Filmstrip displays BufferDm objects.
To add images to the Filmstrip control you simply call the NewBufferDm
method. If we added a FilmStrip control to our form named ctlFilmStrip,
we could modify our earlier BufferView example to display images in the
FilmStrip like this:

//The Event handler for the NewReport event
void m_RepCon_NewReport(object sender,
ReportConnectionEventArgs e)

{

 //get the Inspection report from the
//ReportConnectionEventArgs object

InspectionReport report = e.Report;

 //does our report contain any images?
if(report.Images.Count > 0)

 {

 //extract the image as a BufferDm,
 //and add it to the FilmStrip control
ctlFilmStrip.NewBufferDm((BufferDm)report.
Images[0]);

 }
}

6-6 Visionscape .NET Programmer’s Manual

The Filmstrip Control

Im
ag

e
D

is
p

la
y

C
o

n
tr

o
ls

6

There is also an overloaded version of the NewBufferDm method that
takes a bool value specifying the pass/fail state of the image. The
Filmstrip will then display a green border around images that pass, and a
red border around those that fail. The pass fail state can easily be
extracted from the report data, so our earlier example could be modified
to look like this instead:

ctlFilmStrip.NewBufferDm((BufferDm)report.Images[0],
report.InspectionStats.Pa
ssed);

Properties and Methods of Filmstrip

void NewBufferDm(Visionscape.Steps.BufferDm buf)

Displays the specified buffer datum in the filmstrip. All previous images
are shifted one position in the filmstrip.

void NewBufferDm(Visionscape.Steps.BufferDm buf, bool bPassed)

This overloaded version adds the bPassed parameter. When bPassed is
true, the image is drawn with a green border, if it is false, the image is
drawn with a red border.
Visionscape .NET Programmer’s Manual 6-7

Chapter 6 Image Display Controls
6-8 Visionscape .NET Programmer’s Manual

7

D
ev

ic
e

S
el

ec
ti

o
n

C

o
n

tr
o

ls

7

CHAPTER 7 Device Selection Controls

This chapter covers the Visionscape.Display.Devices assembly. This
assembly provides controls that present you with a list of available
Visionscape Devices, allowing you to select the Device your application
will connect to.

Assembly Name: Visionscape.Display.Devices.dll

Namespace:Visionscape.Display.Devices

Controls:

DeviceDropdown: A dropdown list box with a list of all available
Visionscape Devices.

ToolStripDeviceDropdown: A version of the DeviceDropdown control
that can be used in a ToolStrip control. Note that this control does not
show up in the Visual Studio Toolbox.

Adding the Controls to the Visual Studio Toolbox

If Visual Studio 2008 was installed on your PC at the time when you
installed Visionscape, then all of the visual controls should have been
added to a “Visionscape” tab in the Visual Studio Toolbox. If you installed
Visual Studio 2008 after installing Visionscape, then you can install the
controls to your Toolbox by running our VsToolboxInstall.exe utility:
Visionscape .NET Programmer’s Manual 7-1

Chapter 7 Device Selection Controls
Start -> Programs -> Microscan Visionscape -> Tools -> Install Controls to
Visual Studio Toolbox

This will install all Visionscape controls to the Toolbox. If you prefer to only
install the controls that you need, you can always install the controls
manually by simply dragging the DLL and dropping it on the Toolbox.
Assuming you have installed Visionscape to the folder C:\Vscape, go to
the folder C:\Vscape\Assembly\Display, and find the file
visionscape.display.devices.dll:

The DeviceDropdown Control

The DeviceDropdown control provides a simple dropdown combo box
that is populated with a list of available Visionscape Devices. This is
useful when you have multiple Visionscape Devices in your PC or on your
Network, and you need to provide a way for the user to select the Device
that they wish to connect to. Simply drop this control onto a form, an it will
automatically detect all of the Visionscape Devices that are present in
your PC and on your network, and add them to the list. A populated
DeviceDropdown control might look like this if you had many cameras on
your network:
7-2 Visionscape .NET Programmer’s Manual

The DeviceDropdown Control

D
ev

ic
e

S
el

ec
ti

o
n

C

o
n

tr
o

ls

7

The DeviceSelected event is raised when the user selects a device in the
list. Several properties, methods and events are provided to control the
behavior of the DeviceDropdown control.

Events:

DeviceSelected: Fired when the user selects a device in the list.

Event Handler Function Signature:
void deviceDropdown1_DeviceSelected(VsDevice dev)
dev: The VsDevice object selected by the user.

SelectedDeviceLost: Fired when the device that is currently selected is
no longer detected. This would typically happen when a smart camera is
unplugged from the network.

Event Handler Function Signature:
void deviceDropdown1_SelectedDeviceLost()

FilterDevice: Fired before a Device is added to the list. You can apply
your own logic to prevent certain devices from being added to the list by
setting the bApproved parameter to false.

Event Handler Function Signature:
void deviceDropdown1_FilterDevice(VsDevice dev,

ref bool bApproved)
dev: The device to be added to the list.
bApproved: Set to false if you want to remove this device
from the list.

Properties:

Visionscape.Devices.VsDevice Device { set; get; }

Gets/Sets the currently selected device in the list.

bool AutoConnect { set; get; }

Gets/Sets the current AutoConnect State. If true, whenever the selected
device changes, the VsCoordinator OnDeviceFocus event will fire. Other
controls can look for this event and "Auto connect" to the selected device.

int GroupId { set; get; }

Gets/Sets the group ID assigned to this control. This is used along with
the AutoConnect feature. This group ID will be included in the
Visionscape .NET Programmer’s Manual 7-3

Chapter 7 Device Selection Controls
OnDeviceFocus event that is fired by the VsCoordinator when
AutoConnect is active. This allows you to use multiple DeviceDropDown
controls, with different sets of controls “AutoConnecting” to each.

int ListIndex { set; get; }

Gets/Sets the index of the currently selected Device in the list.

int ListCount { get; }

Returns the current number of devices in the list.

Methods:

string DeviceName(int index)

Returns the name of the device at the specified index in the list.

void ResetList()

Commands the control to clear its list and rebuild it.
7-4 Visionscape .NET Programmer’s Manual

The DeviceDropdown Control

D
ev

ic
e

S
el

ec
ti

o
n

C

o
n

tr
o

ls

7

The ToolStripDeviceDropdown Control

The ToolStripDeviceDropdown control provides the same functionality as
the DeviceDropDown control, however it is intended for use only in
ToolStrips. This control does NOT show up in the Visual Studio Toolbox,
as it can not be dropped onto a form, it can only be used in a ToolStrip
control. When adding a control to your ToolStrip, you will see the
DeviceDropdown as one of the options:

All functionality is identical to the DeviceDropdown control. Refer to the
DeviceDropdown documentation for details.
Visionscape .NET Programmer’s Manual 7-5

Chapter 7 Device Selection Controls
7-6 Visionscape .NET Programmer’s Manual

8

R
ep

o
rt

 D
is

p
la

y
C

o
n

tr
o

ls

8

CHAPTER 8 Report Display Controls

This chapter covers the Visionscape.Display.Reporting assembly. This
assembly contains controls that can be used to display the data from your
running inspections as well as controls that can be used to view and
manipulate I/O.

Assembly Name: Visionscape.Display.Reporting.dll

Namespace: Visionscape.Display.Reporting

Controls:

ResultsView: Displays inspection result data in a grid format.

StatsView: Displays the runtime stats from an inspection.

ReportView: This control combines the ResultsView and StatsView into
one control.

IOView: Allows you to both view and set the current state of a range of
I/O points.

IOTriggerView: Provides the ability to generate Virtual I/O trigger pulses.
Visionscape .NET Programmer’s Manual 8-1

Chapter 8 Report Display Controls
Adding the Controls to the Visual Studio Toolbox

If Visual Studio 2008 was installed on your PC at the time when you
installed Visionscape, then all of the visual controls should have been
added to a “Visionscape” tab in the Visual Studio Toolbox. If you installed
Visual Studio 2008 after installing Visionscape, then you can install the
controls to your Toolbox by running our VsToolboxInstall.exe utility:

Start -> Programs -> Microscan Visionscape -> Tools -> Install Controls to
Visual Studio Toolbox

This will install all Visionscape controls to the Toolbox. If you prefer to only
install the controls that you need, you can always install the controls
manually by simply dragging the DLL and dropping it on the Toolbox.
Assuming you have installed Visionscape to the folder C:\Vscape, go to
the folder C:\Vscape\Assembly\Display, and find the file
visionscape.display.reporting.dll.

The ResultsView Control

The ResultsView control displays the result data contained in an
InspectionReport object, or to be more specific, it displays the contents of
the InspectionReport.Results property. The data is displayed in a grid
format. To use this control, you simply need to set it’s Report property to
the InspectionReport whose results you wish to display. This would
typically be done when responding to the NewReport event of a
ReportConnection (Refer to Chapter 4 for a full description of
ReportConnections and the InspectionReport object). In the following
example, we demonstrate handling the NewReport event, retrieving the
8-2 Visionscape .NET Programmer’s Manual

The ResultsView Control

R
ep

o
rt

 D
is

p
la

y
C

o
n

tr
o

ls

8

InspectionReport, and then displaying it’s results in a ResultsView control
named resultsView1:

//Event handler for the NewReport event of ReportConnection
void m_RepCon_NewReport(object sender,
ReportConnectionEventArgs e)
{

 //get the Inspection report from the
//ReportConnectionEventArgs object

 InspectionReport report = e.Report;
 //Pass the report to our ResultsView control
 resultsView1.Report = report;
}

After the Report property is set, the control will look something like this:

You can clear the control by setting the Report property to null.
Visionscape .NET Programmer’s Manual 8-3

Chapter 8 Report Display Controls
AutoSizing Behavior:

The ResultsView control will automatically adjust it’s height to encompass
the list of results it is displaying. When you need to display the results
from multiple inspections, you can insert multiple ResultsView controls
into a .NET container control (Panel, SplitContainer, etc), set the Dock
property for each to “Top”, and the controls will be autosized and
positioned tightly up against each other. This frees you from having to
right tedious sizing and positioning code.

Properties:

Visionscape.Communications.InspectionReport Report { set; get; }

You display results in the control by setting this property to the
InspectionReport object you wish to display. Set this property to null if you
want to clear the displayed results.

int PrecisionPix { set; get; }

Gets/Sets the number of decimal places used when displaying floating
point values that are in pixel units.

int PrecisionWorld { set; get; }

Gets/Sets the number of decimal places used when displaying floating
point values that are in world units.

bool GridAutoSize { set; get; }

Set to true if you want the width of the grid cells to automatically be
expanded to fit the displayed data. If you set to false, the grid cells to not
change widths.

bool CalibratedValuesEnabled { set; get; }

Set to true if you want the result data to be displayed in calibrated units.
This will have no effect if the inspection that produced the
InspectionReport has not been calibrated.

int NumResults { get; }

The total number of results being displayed in the control.
8-4 Visionscape .NET Programmer’s Manual

The StatsView Control

R
ep

o
rt

 D
is

p
la

y
C

o
n

tr
o

ls

8

int NumStatsDms { get; }

The total number of Statistic Datums being displayed in the control.

int NumTimerDms { get; }

The total number of Time Datums being displayed in the control.

Methods:

The ResultsView control has no methods.

The StatsView Control

The StatsView control displays common runtime information from a
running inspection such as Cycle Time, Process Time, Number of Image
buffers in use, etc. This is all information that is included in an
InspectionReport object, and just as with the ResultsView object, you will
update the display of this control by setting it’s Report property to an
InspectionReport. This would typically be done when responding to the
NewReport event of a ReportConnection (Refer to Chapter 4 for a full
description of ReportConnections and the InspectionReport object). In the
following example, we demonstrate handling the NewReport event,
retrieving the InspectionReport, and then displaying it’s stats in a
StatsView control named statsView1:
Visionscape .NET Programmer’s Manual 8-5

Chapter 8 Report Display Controls
void m_RepCon_NewReport(object sender,
ReportConnectionEventArgs e)
{
 //get the Inspection report from the

//ReportConnectionEventArgs object
 InspectionReport report = e.Report;

 //Pass the report to our StatsView control
 statsView1.Report = report;
}

Once updated, the StatsView control would look something like this:

Properties:

Visionscape.Communications.InspectionReport Report { set; get; }

Set this property to an InspectionReport object, and the runtime stats of
that object will be displayed in the control. Set this property to null to clear
the contents.

Methods:

The StatsView control has no methods.
8-6 Visionscape .NET Programmer’s Manual

The ReportView Control:

R
ep

o
rt

 D
is

p
la

y
C

o
n

tr
o

ls

8

The ReportView Control:

The ReportView control combines the ResultsView and StatsView
controls into a single control, and adds a tool bar at the top to display the
inspection counts, and to allow you to show or hide either the results or
stats. So this control is intended to display all of the important report data
in a single control. You update the dislay of this control by setting it’s
Report property to an InspectionReport. This would typically be done
when responding to the NewReport event of a ReportConnection (Refer
to Chapter 4 for a full description of ReportConnections and the
InspectionReport object). In the following example, we demonstrate
handling the NewReport event, retrieving the InspectionReport, and then
displaying all of it’s relevant data in a ReportView control named
reportView1:

void m_RepCon_NewReport(object sender,
ReportConnectionEventArgs e)
{
 //get the Inspection report from the

//ReportConnectionEventArgs object
 InspectionReport report = e.Report;

 //Pass the report to our ReportView object
 reportView1.Report = report;
}

Visionscape .NET Programmer’s Manual 8-7

Chapter 8 Report Display Controls
Once updated, the ReportView control would look something like this:

The toolbar at the top displays the current inspection counts (inspected,
passed and rejected), and also provides two buttons that can be used to
show/hide the StatsView or ResultsView.

AutoSizing Behavior:

The ReportView control will automatically adjust it’s height to encompass
the list of results it is displaying, as well as the controls that your user has
chosen to show or hide. When you need to display the reports from
multiple inspections, you can insert multiple ReportView controls into a
.NET container control (Panel, SplitContainer, etc), set the Dock property
for each to “Top”, and the controls will be autosized and positioned tightly
up against each other. If your user shows or hides the stats or results in
one of the controls, the height of that conrol will automatically update, and
the positions of all other controls will then automatically adjust so that they
remain docked up against each other. This frees you from writing a lot of
tedious sizing and positioning logic.

Properties:

Visionscape.Communications.InspectionReport Report { set; get; }

Update the display of the control by setting this property to an
InspectionReport object. The control will display the inspection counts,
8-8 Visionscape .NET Programmer’s Manual

The ReportView Control:

R
ep

o
rt

 D
is

p
la

y
C

o
n

tr
o

ls

8

stats and results that are embedded in the InspectionReport. Set this
property to null if you want to clear the report display.

int PrecisionPix { set; get; }

Gets/Sets the number of decimal places used when displaying floating
point values that are in pixel units.

int PrecisionWorld { set; get; }

Gets/Sets the number of decimal places used when displaying floating
point values that are in world units.

bool CalibratedValuesEnabled { set; get; }

When true, results will be displayed in calibrated units. This property has
no effect if the inspection that produced the InspectionReport has not
been calibrated.

Methods:

void ClearCounts()

Sets the displayed counter values to 0. Understand that this does not
clear the counts on your Visionscape Device, it only updates the display
of the control. If you want to clear the result and stats data as well, set the
Report property to null.
Visionscape .NET Programmer’s Manual 8-9

Chapter 8 Report Display Controls
8-10 Visionscape .NET Programmer’s Manual

The IOView Control

The IOView control allows you to view the current state of a range of
Virtual I/O points for a particular device. Each point is represented with a
button, so you can also toggle the state of each I/O point. To use the
IOView control:

– Call the Connect() method, and pass in a reference to the
Visionscape Device whose I/O you want to view.

– Set the I/OFirst property to the index of the first I/O point you want
to view.

– Set the I/OCount property to the number of I/O points you want to
view.

In this example, assume we want to view Virtual I/O Points 10 – 14 on the
device represented by the variable _device:

ioView1.Connect(_device);
ioView1.IOFirst = 10;
ioView1.IOCount = 5;

With the above settings, the control would look something like this:

The IOView Control

R
ep

o
rt

 D
is

p
la

y
C

o
n

tr
o

ls

8

In the above example, Virtual I/O points 11 and 13 are ON, while the other
are off. If you prefer to use different colors to signify the ON and OFF
states, you can modify them via the control properties.

Properties:

int IOFirst { set; get; }

Gets/Sets the 1 based index of the first Virtual I/O point to be displayed in
the control.

int IOCount { set; get; }

Gets/Sets the number of I/O points to be displayed in the control. This
property works together with the I/OFirst property to specify the range of
I/O points to be displayed in the control.

Visionscape.Communications.IOConnection IOConnection { get; }

Returns a reference to the internal IOConnection object used by the
control. Refer to chapter 5 for a description of the IOConnection object.

Color ColorOn { set; get; }

Gets/Sets the color that is displayed when an I/O point is ON.

Color ColorOff { set; get; }

Gets/Sets the color that is displayed when an I/O point is OFF.

Color ColorFontOn { set; get; }

Gets/Sets the text color that is used when an I/O point is ON.

Color ColorFontOff { set; get; }

Gets/Sets the text color that is used when an I/O point is OFF.

Color ColorFontDisabled { set; get; }

Gets/Sets the text color that is used when an I/O point is disabled.

Color ColorDisabled { set; get; }

Gets/Sets the color that is used when an I/O point is disabled.
Visionscape .NET Programmer’s Manual 8-11

Chapter 8 Report Display Controls
int ButtonWidth { set; get; }

Gets/Sets the width in pixels of the I/O buttons.

int ButtonHeight { set; get; }

Gets/Sets the height in pixels of the I/O buttons.

Font ButtonFont { set; get; }

Gets/Sets the font used to display the button text.

Padding ButtonMargin { set; get; }

Gets/Sets the amount of space between buttons.

bool IsConnected { get; }

Returns true if the control is currently connected to a Device, false if not.

Methods:

bool Connect(Visionscape.Devices.VsDevice dev)

dev: The device to connect to.

Connects the control to the specified device. Returns true if successful.
The control is not functional until it has been connected.

void SetIOPoint(int ioNum, bool bOn)

ioNum: The 1 based index of the I/O point.

bOn: If true, the I/O point is turned ON, if false, it is turned OFF.

Sets the specified Virtual I/O point either ON or OFF.

void Disconnect()

Disconnects the control from the device. The control will be non-functional
after this call completes.
8-12 Visionscape .NET Programmer’s Manual

The IOTriggerView Control

R
ep

o
rt

 D
is

p
la

y
C

o
n

tr
o

ls

8

Visionscape .NET Programmer’s Manual 8-13

The IOTriggerView Control

The IOTriggerView control provides one or more sub Trigger controls that
allow you to pulse a Virtual I/O point at a specified interval. You can use
this control to simulate triggers to your Inspections. To use the control:

– Set the NumTriggers property to the number of trigger pulses you
want to generate.

– Call the Connect method, passing in a reference to the Device
you want to generate triggers to.

The following example demonstrates how to configure the control for 2
triggers, and then connects it to a device represented by the VsDevice
variable _device:

ioTriggerView1.NumTriggers = 2;
ioTriggerView1.Connect(_device);

Once connected, you use the combo box to select the Virtual I/O point
you want to pulse, and then enter the time in milliseconds between
triggers in the text box. Press the “Start Trigger” button to start the trigger
pulses, press it again to shut the pulses off. Below is an example of the
control set up to pulse Virtual I/O point’s 3 and 6.

Chapter 8 Report Display Controls
Properties:

int NumTriggers { set; get; }

Gets/Sets the number of trigger controls to be displayed in the control.

Visionscape.Communications.IOConnection IOConnection { get; }

Returns a reference to the internal IOConnection object used by the
control. Refer to chapter 5 for a description of the IOConnection object.

string CanStartText { set; get; }

Gets/Sets the text that is displayed in the I/O button when a trigger can be
started.

string NeedPointText { set; get; }

Gets/Sets the text that is displayed in the I/O button when an I/O point has
not yet been selected.

string NotConnectedText { set; get; }

Gets/Sets the text that is displayed in the I/O button when the control is
not connected to a Device.

Color ColorOn { set; get; }

Gets/Sets the color that is displayed when an I/O point is ON.

Color ColorOff { set; get; }

Gets/Sets the color that is displayed when an I/O point is OFF.

Color ColorFontOn { set; get; }

Gets/Sets the text color that is used when an I/O point is ON.

Color ColorFontOff { set; get; }

Gets/Sets the text color that is used when an I/O point is OFF.

Color ColorFontDisabled { set; get; }

Gets/Sets the text color that is used when an I/O point is disabled.
8-14 Visionscape .NET Programmer’s Manual

The IOTriggerView Control

R
ep

o
rt

 D
is

p
la

y
C

o
n

tr
o

ls

8

Color ColorDisabled { set; get; }

Gets/Sets the color that is used when an I/O point is disabled.

Font ButtonFontTriggering { set; get; }

Gets/Sets the font used to draw button text when the control is triggering.

Font ButtonFont { set; get; }

Gets/Sets the font used to display the button text.

Padding ButtonMargin { set; get; }

Gets/Sets the amount of space between trigger controls.

Methods:

bool Connect(Visionscape.Devices.VsDevice dev)

dev: The device to connect to.

Connects the control to the specified device. Returns true if successful.
The control is not functional until it has been connected.

void Disconnect()

Disconnects the control from the Device.

bool IsConnected()

Returns true if the control is currently connected to a device.

void UpdateAll()

Forces the control to update all of the trigger controls.
Visionscape .NET Programmer’s Manual 8-15

Chapter 8 Report Display Controls
8-16 Visionscape .NET Programmer’s Manual

9

R
u

n
ti

m
e

U
ti

lit
y

C
o

n
tr

o
ls

9

CHAPTER 9 Runtime Utility Controls

This chapter covers the Visionscape.Display.Runtime assembly. This
assembly contains controls that are intended to provide useful features
while your inspections are running.

Assembly Name: Visionscape.Display.Runtime.dll

Namespace:Visionscape.Display.Runtime

Controls:

QueueView: Allows you to view all of the images and results in an
InspetionReportList.

Adding the Controls to the Visual Studio Toolbox

If Visual Studio 2008 was installed on your PC at the time when you
installed Visionscape, then all of the visual controls should have been
added to a “Visionscape” tab in the Visual Studio Toolbox. If you installed
Visual Studio 2008 after installing Visionscape, then you can install the
controls to your Toolbox by running our VsToolboxInstall.exe utility:

Start -> Programs -> Microscan Visionscape -> Tools -> Install Controls to
Visual Studio Toolbox

This will install all Visionscape controls to the Toolbox. If you prefer to only
install the controls that you need, you can always install the controls
manually by simply dragging the DLL and dropping it on the Toolbox.
Visionscape .NET Programmer’s Manual 9-1

Chapter 9 Runtime Utility Controls
Assuming you have installed Visionscape to the folder C:\Vscape, go to
the folder C:\Vscape\Assembly\Display, and find the file
visionscape.display.runtime.dll.

The QueueView Control

The QueueView control allows you to view the contents of a list of
InspectionReport objects. The Inspection Step in Visionscape has a “Part
Queue” feature that when enabled, will maintain a list of the last n cycles
of inspection data (images, results and stats). The Part Queue data can
be uploaded from a running inspection using the
ReportQueueConnection object, and then displayed in this control. Refer
to chapter 4 for details on the ReportQueueConnectin object. To use this
control:

– Upload the Part Queue data from a running inspection, this will
produce an InspectionReportList object.

– Set the QueueView control’s Reports property to the
InspectionReortList object.
9-2 Visionscape .NET Programmer’s Manual

The QueueView Control

R
u

n
ti

m
e

U
ti

lit
y

C
o

n
tr

o
ls

9

In the following example, we demonstrate how you might upload Part
Queue data, and then display it in the QueueView control named
queueView1:

//Upload the Queue from the specified inspection on the
//specified device, and display in a QueueView control
private int UploadAndDisplayPartQ(VsDevice dev, int
inspIndex)
{
 int qSize = 0;

 //Create and connect our ReportQueueConnection object
 ReportQueueConnection qconn = new

ReportQueueConnection();
 bool bRes = qconn.Connect(dev, inspIndex);

 //if successfully conected...
 if(bRes)
 {
 //get the summary
 ReportQueueSummary summary = qconn.Summary();
 //are there any entries in the Q currently?
 if(summary != null && summary.CurrentEntries > 0)
 {
 //Yes, so go ahead and upload the Queue.
 //Retrieve the entire contents of the Queue
 InspectionReportList reports =

qconn.RecordGetAll();

 //display the contents in our QueueView control
 queueView1.Reports = reports;

 qSize = reports.Count;
 }
 }
 return qSize; //return the number of records uploaded
}

Visionscape .NET Programmer’s Manual 9-3

Chapter 9 Runtime Utility Controls
The QueueView would look something like this when records are being
displayed:

A scrollable list of thumbnail images is shown on the left side of the
control. These represent all of the records in the Queue, simply click on
the image in the list, and the full sized image will be displayed in the top
right of the control, and the counts, stats, and results for that record will be
displayed at the bottom-right of the control. The toolbar provides zooming
options as well as options that allow you to save the currently selected
image, or all images in the Queue.
9-4 Visionscape .NET Programmer’s Manual

The QueueView Control

R
u

n
ti

m
e

U
ti

lit
y

C
o

n
tr

o
ls

9

Properties:

Visionscape.Communications.InspectionReportList Reports { set; get; }

You display the contents of a Part Queue by assigning this property to an
InspectionReportList object. This would typically be uploaded via a
ReportQueueConnection object (see previous example). Set this property
to null if you want to clear the displayed records.

int SnapIndex { set; get; }

Gets/Sets the index of the Snapshot whose images are being displayed in
the control. This is only relevant when the Inspection contains more than
one Snapshot.

bool ShowToolbar { set; get; }

Shows/Hides the toolbar at the top of the control.

Methods:

bool SaveAllImages(string strFolder,
Visionscape.Steps.EnumImgFileType
fType, bool bDisplayFirstFileName)

strFolder: The path to the folder where the images will be saved.

fType: Specifies the format in which the images should be saved. TIFF or
BMP.

bDisplayFirstFileName: If true, a dialog will pop-up to display the file
name of the first image. Saves all of the images in the
InspectionReportList to disk. File names are assigned automatically. File
Name format is:

InspectionSymbolicName_snapshotindex_cyclecount
Visionscape .NET Programmer’s Manual 9-5

Chapter 9 Runtime Utility Controls
9-6 Visionscape .NET Programmer’s Manual

10

S
et

u
p

 M
o

d
e

C
o

n
tr

o
ls

10
CHAPTER 10 Setup Mode Controls

This chapter covers the Visionscape.Display.Setup assembly. The
controls in this assembly would be used when you want to provide a
“Setup Mode” capability in your application. This assembly provides
powerful controls that allow you to edit your Jobs, adjust camera settings
and vision tool settings, and to “tryout” your vision programs for test and
debug purposes.

Assembly Name: Visionscape.Display.Setup.dll

Namespace: Visionscape.Display.Setup

Controls:

SetupManager: Allows you to view images from your camera(s), adjust
vision tool postions and settings, and provides the ability to “Tryout” your
inspections, allowing you to debug inspection issues and improve
peformance.

StepTreeEditor: Provides a Tree view of your vision Job. Allows you to
edit the job by adding and removing Steps. This control is also embedded
in the SetupManager control.
Visionscape .NET Programmer’s Manual 10-1

Chapter 10 Setup Mode Controls
Adding the Controls to the Visual Studio Toolbox

If Visual Studio 2008 was installed on your PC at the time when you
installed Visionscape, then all of the visual controls should have been
added to a “Visionscape” tab in the Visual Studio Toolbox. If you installed
Visual Studio 2008 after installing Visionscape, then you can install the
controls to your Toolbox by running our VsToolboxInstall.exe utility:

Start -> Programs -> Microscan Visionscape -> Tools -> Install Controls to
Visual Studio Toolbox

This will install all Visionscape controls to the Toolbox. If you prefer to only
install the controls that you need, you can always install the controls
manually by simply dragging the DLL and dropping it on the Toolbox.
Assuming you have installed Visionscape to the folder C:\Vscape, go to
the folder C:\Vscape\Assembly\Display, and find the file
visionscape.display.setup.dll.

The Setup Manager Control

The SetupManager control provides full Setup Mode capabilities in a
single control. This is by far the most powerful control we offer in
VsKit.net. With SetupManager, you can acquire single images or live
video, you can adjust your Vision tool ROIs and parameters, and you can
10-2 Visionscape .NET Programmer’s Manual

The Setup Manager Control

S
et

u
p

 M
o

d
e

C
o

n
tr

o
ls

10
run your inspections in a “Tryout mode” which will show you the pass/fail
status for each Step. You can tryout your entire inspection, or just a single
step. To use the SetupManager control you must connect its RootStep
property to a Step in your Job. You would typically connect it to an
Inspection Step, but you can also connect it to a VisionSystem Step or a
Snapshot. In the following example we will demonstrate connecting the
SetupManager control to the first inspection Step in a Job. Specifically,
the example does the following:

– In the Load event of our main form, we instantiate a
VsCoordinator, and then wait for the Device named “GigeVision1”
to be discovered.

– The OnDeviceFocusEventHandler function will be called when
the Device is discovered. At this time, we will load an AVP file.

– We connect the Job to the GigE System by downloading it to the
device.

– We find the first Inspection Step in the Job.

– We connect the SetupManager by setting its RootStep property to
the Inspection Step.

private void frmMain_Load(object sender, EventArgs e)
{
 //instantiate our coordinator object
 _coordinator = new VsCoordinator();

 //wire up our event handler to the OnDeviceFocus event
 _coordinator.OnDeviceFocus += OnDeviceFocusEventHandler;
 //tell coordinator to fire the OnDeviceFocus event when
 //the device GigEVision1 is discovered
 _coordinator.DeviceFocusSetOnDiscovery("GigEVision1", -1);
}
private void OnDeviceFocusEventHandler(VsDevice objDevice)
{
 //We've discovered our Device....
 _device = objDevice;
 //Load our job
 _job.Load("C:\\Vscape\\Jobs\\GigETest.avp");
 //download the job to our device, so it is ready to run
 _device.Download(_job, true);

 //find the first inspection step in the Job
Visionscape .NET Programmer’s Manual 10-3

Chapter 10 Setup Mode Controls
 Step insp = _job.FindByType("Step.Inspection");
 //connect Setup Manager
 ctlSetup.RootStep = insp;
}

The SetupManager would look something like this when connected:

The Setup Manager Components:

By default, the Setup Manager is made up of 4 major components which
we will describe here:

Toolbar:
10-4 Visionscape .NET Programmer’s Manual

The Setup Manager Control

S
et

u
p

 M
o

d
e

C
o

n
tr

o
ls

10
The buttons on the toolbar allow you to acquire single images and live
video, allow you to train Steps, and provide various tryout functions. All of
the buttons have a corresponding public function exposed by
SetupManager, so you can hide the toolbar and create your own. The
meaning of each button is as follows:

Wizard Next: Pressing this button will run the current Step, and then
move the selection to the next Step. By repeatedly clicking this button,
you can step through your inspection one vision tool at a time.

Wizard Previous: Pressing this button moves the selection to the
previous button in the list.

Tryout Start: Press this button to start a Tryout of your inspection. This
will run your inspection for one cycle, and then the tryout will end. Each
Step in the Job will be run in order, and it’s status will be updated in the
Setup Step List on the left side of the control. If a Step passes, a green
check mark is displayed next to it’s name, if it fails, a red X is displayed.

Tryout Stop: This button is only active when a Tryout has been started.
Press this button to stop the Tryout.

Tryout This Step: Pressing this button will run only the currently selected
Step. Its pass/fail status will be updated in the Setup Step List.

Tryout in a Loop: Runs your inspection continuosly in a loop. The tryout
does not stop until the user presses the Tryout Stop button.
Visionscape .NET Programmer’s Manual 10-5

Chapter 10 Setup Mode Controls
Tryout and Acquisition Options: A dropdown list of options that control
how image Acquisition and/or Tryouts are executed.

The options are:

– Acquire Images During Tryout: When this option is enabled, and
you run a Tryout, a new image will be acquired. This is the default
behavior. Occasionally you will want to run over and over on the
current image without acquiring a new one, in which case you
should disable this option.

– Use Triggers: If the Acquire Step(s) in your Inspection have a
Trigger assigned, and this option is enabled, then the Setup
Manager will block and wait for a Trigger when ever you acquire a
single image, or live video or when ever your start a Tryout. If you
do not want to wait for the trigger, disable this option.

– Use I/O: This is identical to the “Use Triggers” option, only it
applies to cases where you are using the Digital Input Step to wait
for a specified input point to transition. If enabled, when you run a
Tryout, your inspection will block and wait for the I/O point to
transition. If you do not want to block on your Digital Input Steps,
disable this option.

– Run Step after it is Modified: When enabled, a Vision tool in your
Job will automatically be run whenever you move/resize it’s ROI,
or modify one of it’s parameters. When working with large jobs on
slower PCs, you may find that this makes performance somewhat
sluggish, so turning this option off will prevent the Step from
running after each modification.

Train Step: This button is used to train the currently selected Step. It is
only enabled if the selected Step is trainable (e.g. One Pin Find,
DataMatrix tool, OCV Fontless Step, etc) and is disabled for those Steps
that do not need to be trained (Blob tool, Flaw tool, Fast Edge, etc). When
a trainable Step is selected, the background color of the button will
indicate whether it is currently trained or not. A green background means
the Step is trained, red indicates that it needs to be trained.
10-6 Visionscape .NET Programmer’s Manual

The Setup Manager Control

S
et

u
p

 M
o

d
e

C
o

n
tr

o
ls

10
Acquire an Image: Clicking this button will cause a new image to be
acquired and displayed. If the “Use Triggers” option is enabled, and you
have a trigger assigned in your Acquire Step, then Setup Manager will
wait for the trigger before acquiring an image. If you want to acquire
images without waiting for the trigger, click on the Tryout and Acquisition
options button, and turn off the “Use Triggers” option.

Live Video: Clicking this option puts the Setup Manager into Live Video
mode. If the “Use Triggers” option is enabled, and you have a trigger
assigned in your Acquire Step, then Setup Manager will wait for a trigger
before acquiring an image. If you want Live Video mode to not wait for the
trigger, click on the Tryout and Acquisition options button, and turn off the
“Use Triggers” option.

Zoom In/Out Buttons: Use these buttons to zoom the current image
either in or out.

Zoom Auto: Automatically zooms the image so that it fits within the
current image view.

Zoom 1:1: Causes the image to be displayed at a 1 to 1 ratio. In other
words, the image is displayed without any zooming applied.
Visionscape .NET Programmer’s Manual 10-7

Chapter 10 Setup Mode Controls
Setup Step List:

Displayed on the left side of the control, this is a flat list of all the Steps in
your Job that may need to be set up. This list will not contain all of the
Steps in your Job, only those that have an ROI (region of interest) and
those that have a Status that you might want to watch when running
tryouts (like the IF step, VarAssign step, Digital Output Step, etc).
Selecting a Step in this list will also cause it to be selected in the Image
View and in the Datum Grid View. When running Tryouts, a check mark
will be displayed next to each Step in this list that passes, and a red X will
be placed next to those Steps that fail.

Image View:

Displayed at the top right of the control, this is where you will view your
images. The ROI (region of interest) for each Vision tool in the currently
selected Inspection will be displayed here as well. You can reposition any
ROI by clicking and dragging, and you can resize them by grabbing the
control points on the corners of the ROI, and dragging. Selecting any ROI
10-8 Visionscape .NET Programmer’s Manual

The Setup Manager Control

S
et

u
p

 M
o

d
e

C
o

n
tr

o
ls

10
in the image will also cause that Step to be selected in the Setup Step
List, and in the Datum View.

Datum View:

Displayed at the bottom right of the control, the Datum View displays the
list of parameters for the currently selected Step. You would come here to
adjust the performance of your vision tools.

Setup Manager Options:

The Options property can be used to adjust various options of the Setup
Manager control. This is a bitfield property, so multiple values can be
combined. The values of the bits are defined by the
SetupManagerOptions enum. The possible enum values are as follows:

AllowMouseToolInsertion:

Allow tools to be inserted into the job by clicking and dragging in the
image view. On by default.

AutoRegenerate:

When set, Steps will be automatically run whenever you adjust their ROI
size or position, or when you change a parameter in the Datum View. On
by default.

AutoRetrain:

Trainable Steps will be automatically trained whenever they are selected.
This option is rarely used, and is off by default.
Visionscape .NET Programmer’s Manual 10-9

Chapter 10 Setup Mode Controls
AllowContextMenu:

When the user right-clicks on the Image View, a context menu will pop-up
providing various options. Clear this bit to disable the context menu. This
is on by default.

EditGraphics:

Graphics should be displayed when the Steps are run. On by default.

RunGraphics:

This is not applicable.

AllowToolMovement:

On by default, clear this bit if you want to disable the movement of tools in
the Image View.

DefaultOptions = AllowMouseToolInsertion | AllowToolMovement |
AutoRegenerate | AllowContextMenu | EditGraphics | RunGraphics

To make it easier to set the individual Option values, the method
OptionSet() if provided. Following are some examples of how you might
set various Setup Manager options.

 //Disable the context menu
ctlSetup.OptionSet(SetupManagerOptions.AllowContextMenu,
false);
//Disable tool movement
ctlSetup.OptionSet(SetupManagerOptions.AllowToolMovement,
false);
//Want Steps to auto run whenever they are modified
ctlSetup.OptionSet(SetupManagerOptions.AutoRegenerate,
true);

Showing, Hiding and Repositioning the Various Elements
of Setup Manager:

As mentioned in the previous section, Setup Manager will, by default,
show it’s toolbar, the Setup Step List, the ImageView and the Datum View.
All of these components can be hidden however, and there is also a
StepTree View that can be shown, which allows you to view your entire
Job, and to add or remove Steps. To show or hide individual control
10-10 Visionscape .NET Programmer’s Manual

The Setup Manager Control

S
et

u
p

 M
o

d
e

C
o

n
tr

o
ls

10
elements, use the OptionsLayout property. This property is a bitfield, so
multiple options can be combined. The values of the bits are defined by
the SetupManagerLayoutOptions enum. The possible values are:

ShowDatumGrid:

Set this bit to show the Datum grid view, clear it to hide it. On by default.

ShowDatumGridOnRight:

Set this bit to position the Datum grid view on the right side of the control,
rather than at the bottom. This bit is off by default.

ShowStepTree:

Set this bit to show the Step Tree view of the Job. This bit is ff by default.

ShowToolbar:

Clear this bit to hide the toolbar, which is shown by default. You would
hide the toolbar when you want to create your own.

ShowView:

Clear this bit if you want to hide the image view. On by default.

ShowItemList:

Clear this bit if you want to hide the Setup Step List. On by default.

ShowStatusbar:

Clear this bit if you want to hide the status bar at the bottom of the control.
On by default.

ShowInspErrorStatusbar:

Currently not used.

ShowBufStatusbar:

Clear this bit to hide the status bar that is show at the bottom of the Image
View. On by default.
Visionscape .NET Programmer’s Manual 10-11

Chapter 10 Setup Mode Controls
DefaultLayout = ShowView | ShowBufStatusbar | ShowItemList |
ShowDatumGrid | ShowToolbar

These are the options that are set by default.

JobEditLayout = ShowBufStatusbar | ShowStepTree | ShowDatumGrid |
ShowToolbar

This set of options provides you with a view that can be used to edit the
Job.

JobEditLayoutWithImage = ShowView | ShowBufStatusbar |
ShowStepTree | ShowDatumGrid | ShowToolbar,

This set of options allows you to edit the Job, and also see the image at
the same time.

ShowEverything = ShowView | ShowBufStatusbar | ShowItemList |
ShowDatumGrid | ShowToolbar | ShowStepTree

This set of options shows all views. This should be considered an
advanced layout, as most users will find this layout to be somewhat
cluttered and confusing.

Rather than have to perform complex bit math on this property, you can
use the OptionLayoutSet function to turn options on or off. Following are
some examples:

//use the standard layout
ctlSetup.OptionsLayout =
SetupManagerLayoutOptions.DefaultLayout;
//hide the toolbar
ctlSetup.OptionLayoutSet(SetupManagerLayoutOptions.ShowToolb
ar, false);
//hide the Setup list, and instead show the Step Tree
ctlSetup.OptionLayoutSet(SetupManagerLayoutOptions.ShowItemL
ist, false);
ctlSetup.OptionLayoutSet(SetupManagerLayoutOptions.ShowStepT
ree, true);
//show the Datum Grid on the right side of the control,
//rather than the bottom
ctlSetup.OptionLayoutSet(SetupManagerLayoutOptions.ShowDatum
GridOnRight, true);

Likewise, there is an OptionIsOn method that can be used to test if a
certain bit is set or not.
10-12 Visionscape .NET Programmer’s Manual

The Setup Manager Control

S
et

u
p

 M
o

d
e

C
o

n
tr

o
ls

10
if(ctlSetup.OptionIsOn(SetupManagerOptions.AutoRegenerate))
 {
 //if AutoRegenerate is on, do something....
 }

Adjusting the Tryout Options

SetupManager also provides options that control the behavior of Tryouts.
These options are set via the OptionsTryout property. This is a bitfield, so
multiple options can be combined. The values of the bits are defined by
the SetupManagerTryoutOptions enum. The possible values are:

DoAcquire

When set, a new image will be acquired when a Tryout is run. Clear this
bit if you want to run on the current image and not acquire a new one.
This bit is on by default.

UseTriggers

When set, an Acquire operation, Live Video and Tryouts will stop on all
Snapshots on which a Trigger has been assigned. It will block and wait for
a trigger before acquiring an image and running the rest of the Steps. This
is useful when a part can not be placed stationary in front of the camera.
This bit is off by default.

UseIO

Similar to UseTriggers, but when this option is set, Tryouts will block on
any Digital Input Steps that have their “Data Valid Signal I/O” values
assigned to an I/O point. This option is off by default.

TackImage

When running a Tryout, Setup Manager will always update the Image
View to show the parent buffer of the current Step that is running. Set this
bit when you want the control to just show the current buffer. This bit is off
by default.
Visionscape .NET Programmer’s Manual 10-13

Chapter 10 Setup Mode Controls
DefaultOptions = DoAcquire

This will set the control to the default options, which is currently to have
just the DoAcquire bit set.

Acquisition Methods:

In this section we’ll describe the methods that allow you to start and stop
image acquisitions and live video.

To command the Setup Manager to acquire a new image, and display it in
the image view, you will call one of the methods that controls Acquisition.
The easiest is the Acquire() method. In this example, assume our
SetupManager control is named ctlSetup, and we simply want to start a
synchronous acquisition:

//Perform a Synchronous acquire,
//ie. don't return until the acquire is complete.
bool bAcqSuccess = ctlSetup.Acquire();

In the previous example, your application will be blocked until the
acquisition completes. If you have the “Use Triggers” bit set in the
OptionsTryout property, then this method will block until you generate a
trigger. If you can’t generate a trigger, you’ll be blocked forever. This may
be confusing to your user, so if you are using the “Use Triggers” option,
you will want to at least use the AcquireWithTimeout() method. As the
name implies, you can specify a timeout value, so you will not block
forever:

//Perform a Synchronous acquire,
//but timeout if the acquisition is not complete after 2
//seconds
bool bAcqSucess = ctlSetup.AcquireWithTimeout(2000);

The other alternative to specifying a timeout, is to perform an
asynchronous acquire. This is done by calling the AcquireStart() method.
This will start an acquisition, and immediately return control to your
application. When the image acquisition is complete, you will receive a
StateChanged event, which will return a StateChangedEventArgs
parameter. The StateChangedEventArgs parameter has a
StateChangedEvent property that will Identify “AcquireDone” as the state.
You can also call the AcquireStop method to force the asynchronous
acquire to stop. In the following example, we present a simple case where
one command button is used to start an acquisition, and the second is
10-14 Visionscape .NET Programmer’s Manual

The Setup Manager Control

S
et

u
p

 M
o

d
e

C
o

n
tr

o
ls

10
used to stop it. Assume these buttons are named butAcqStart and
butAcqStop.

Note: While an asynchronous acquisition is active, you can not start live
video or a tryout.

private void frmMain_Load(object sender, EventArgs e)
{
//wire up our event handler when the app starts up,
//so we can receive AcquireDone notifications
 ctlSetup.StateChanged += ctlSetup_StateChanged;
}

//The click event for our “Acquire Start” event
private void butAcqStart_Click(object sender, EventArgs e)
{
 //disable this button while the acquire is active
 butAcqStart.Enabled = false;
 //Start an Asynchronouse acquisition
 bool bAcqStarted = ctlSetup.AcquireStart();

 UpdateButtons();
}

//We’ll receive this event to signify any SetupManager state
//change,
//including AcquireDone
void ctlSetup_StateChanged(object sender,
SetupManager.StateChangedEventArgs e)
{
 //Check if the state change is AcquireDone
 if(e.StateChangedEvent ==
StateChangedEvents.AcquireDone)
 {

//Update the state of our buttons
 UpdateButtons();
 }
}

//The click event for our “Acquire Stop” button
private void butAcqStop_Click(object sender, EventArgs e)
{
 //force the asynchronous acquire to stop
 ctlSetup.AcquireStop();
 //update the button states
Visionscape .NET Programmer’s Manual 10-15

Chapter 10 Setup Mode Controls
 UpdateButtons();
}

//Updates the Enabled/Disabled state of the buttons,
//based on whether an Acquisition is active or not
private void UpdateButtons()
{
 butAcqStart.Enabled = !ctlSetup.AcquireActive();
 butAcqStop.Enabled = ctlSetup.AcquireActive();
}

To command SetupManager to enter live video mode, you use the
LiveVideoStart method. This is an asynchronous method that will start the
live video and immediately return control to you.

//Start asynchronous live video mode
ctlSetup.LiveVideoStart();

You must call LiveVideoStop to exit live video mode. While live video is
active, you can not run a tryout, or start an acquisition.

//Stop live video
ctlSetup.LiveVideoStop();

To check if live video is currently active or not, you can check the “Can”
property of SetupManager.

//if we "can" start live video, it's not currently on
if (ctlSetup.Can.LiveVideoStart)
{
}
//if we "can" stop live video, that means it is currently on
if(ctlSetup.Can.LiveVideoStop)
{
}

Tryout Functionality:

SetupManager provides several methods that allow you to “Try out” your
inspection(s). When we say tryout, we mean to run your inspection for the
purposes of debugging and or testing. Running your inspection in tryout
mode is not as fast as running in a full fledged run-mode, so you should
never use the tryout functionality to run your inspections on the factory
floor. When you start a tryout, each Step in the Setup List is run
sequentially, and a green check mark is placed next to those Steps that
10-16 Visionscape .NET Programmer’s Manual

The Setup Manager Control

S
et

u
p

 M
o

d
e

C
o

n
tr

o
ls

10
pass, and a red X is placed next to those that fail. So you receive constant
feedback on how your inspection is performing. You can launch tryouts
programactically using one of the several methods provided by
SetupManager. In this section we provide a brief description and example
of the various tryout options available to you.

Run the current Step:

You can run the current Step by simply calling the TryoutCurrentItem()
method:

ctlSetup.TryoutCurrentItem();

This will run the currently selected Step, update it’s run graphics in the
image, and update the pass/fail status of the Step in the Setup List by
displaying a green check for a pass, and a red X for a fail. This is an
asynchronous method, meaning it will start the run of the selected Step,
and immediately return. The StateChanged event will be sent with the
TryoutDone notification when the run is complete.

Run the Inspection for One Cycle:

When you are building and testing a vision inspection, it is typical that you
will want to run all of the Steps in the inspection for one cycle to see how it
is performing. There are two ways that you can do this.

1. Call the TryoutStart() method, and specify you want to run for 1
iteration.

2. Call the TryoutOneCycle() method.

Each of these methods starts an asynchronous tryout. At the end of the
cycle you will receive the TryoutIterationDone event, as well as the
StateChanged event , which will specify the TryouDone notification. It is
important to understand that you can not start other operations while a
Tryout is active. You can not start an acquisition or live video for instance.
When you start an asynchronous tryout, you should disable all options in
your UI until it is complete, or until you have stopped the tryout by calling
the TryoutStop method. Following is a simple example that demonstrates
starting a Tryout for one cycle, disabling the controls in our UI, and then
re-enabling them when we receive the notification that the Tryout is done.

// User clicked the “Tryout Start” button
private void butTryoutStart_Click(object sender, EventArgs e)
{

Visionscape .NET Programmer’s Manual 10-17

Chapter 10 Setup Mode Controls
 //start an asynchronous tryout that will run for one
//cycle

 ctlSetup.TryoutOneCycle(); //could also call
//ctlSetup.TryoutStart(1);
 //Disable all controls in your UI
 DisableUI();
}
//User clicked the “Tryout Stop” button
private void butAcqStop_Click(object sender, EventArgs e)
{
 //user wants to stop the tryout,
 ctlSetup.TryoutStop();
}
//The StateChanged event will let us know when the tryout is
//complete
void ctlSetup_StateChanged(object sender,
SetupManager.StateChangedEventArgs e)
{
switch(e.StateChangedEvent)
{
 case StateChangedEvents.TryoutDone:
 //Tryout is complete, reneable the UI
 ReEnableUI();

break;
}

}

Run continuously in a Loop:

To run your inspection continuously in a loop, you simply need to call the
TryoutStart() method, specifying nothing for the number of iterations.

ctlSetup.TryoutStart();

This will run your inspection until you call the TryoutStop() method as
shown in the example above.

Checking the Current State of the Control Using the “Can”
Property

SetupManager has a property named “Can” that is intended to tell you
what operations you can and can not currently perform safely. The Can
property returns a variable of type SetupManagerCan. The properties of
10-18 Visionscape .NET Programmer’s Manual

The Setup Manager Control

S
et

u
p

 M
o

d
e

C
o

n
tr

o
ls

10
this object identify which operations can and can not be performed. For
example, you might check if it is OK to start an Acquisition like this:

//Start an Asynchronouse acquisition if we can
if(ctlSetup.Can.AcquireStart)
 ctlSetup.AcquireStart();

Likewise, you could check if it was OK to start a Tryout like this:

if (ctlSetup.Can.TryoutStart)
 ctlSetup.TryoutStart();

As demonstrated earlier, you can also use this property to tell you if Live
Video is currently active. The LiveVideoStop property will only be true
when live video has been turned on, so if you needed to make sure that
Live Video was off before performing some action, you could do the
following:

//if live video is On, turn it off
if (ctlSetup.Can.LiveVideoStop)
 ctlSetup.LiveVideoStop();

Detecting State Changes

Often you will want to be informed when the user starts a Tryout, or turns
on live video, or changes the state of the control in some way. Rather than
have a separate event for each of these state changes, SetupManager
provides just one, the StateChanged event. This event passes a
StateChangedEventArgs variable to your event handler.
StateChangedEventArgs contains a StateChangedEvent property that
identifies the event that has changed state. Following is an example
where we respond to all of the possible state change events, and simply
dump text to the console window identifying the state:

private void frmMain_Load(object sender, EventArgs e)
{
//wire up our StateChanged event handler
 ctlSetup.StateChanged += ctlSetup_StateChanged;
}
void ctlSetup_StateChanged(object sender,
 SetupManager.StateChangedEventArgs e)
{
switch(e.StateChangedEvent)
{
 case StateChangedEvents.AcquireDone:
Visionscape .NET Programmer’s Manual 10-19

Chapter 10 Setup Mode Controls
 Console.WriteLine("Aquisition is complete");
 break;
 case StateChangedEvents.AcquireStarted:
 Console.WriteLine("Aquisition has been started");
 break;
 case StateChangedEvents.LiveDone:
 Console.WriteLine("Live Mode has exited");
 break;
 case StateChangedEvents.LiveStarted:
 Console.WriteLine("Live Mode started");
 break;
 case StateChangedEvents.TryoutDone:
 Console.WriteLine("Tryout is complete");
 break;
 case StateChangedEvents.TryoutStarted:
 Console.WriteLine("Tryout has been started");
 break;
 case StateChangedEvents.WizardNext:
 Console.WriteLine("User pressed Wizard Next button");
 break;
 case StateChangedEvents.WizardPrev:
 Console.WriteLine("User pressed Wizard Previous
button");
 break;
}
}

Properties, Methods and Events

In the following section we provide a complete description of all Setup
Manager properties, methods and events.

Properties:

SetupManagerCan Can { get; }

Returns a SetupManagerCan object, the properties of which identify
which actions currently “can” be executed. All properties of
SetupManagerCan are of type bool, and they identify a method of
SetupManager that is OK to call. Following are a few examples of
SetupManageCan properties.
10-20 Visionscape .NET Programmer’s Manual

The Setup Manager Control

S
et

u
p

 M
o

d
e

C
o

n
tr

o
ls

10
SetupManagerCan.Acquire: It is OK to call the Acquire method.

SetupManagerCan.AcquireStart: It is OK to call the AcquireStart
method.

SetupManagerCan.AcquireStop: It is OK to call the AcquireStop
method (an acquire is active).

SetupManagerCan.AcquireWithTimeout: It is OK to call the
AcquireWithTimeout method.

SetupManagerCan.LiveVideoStart: It is OK to call LiveVideoStart.

SetupManagerCan.LiveVideoStart: It is OK to call LiveVideoStop
(Live video is currently active).

SetupManagerCan.TryoutStop: It is OK to call TryoutStop (a tryout is
currently active).

int ImageViewSize { set; get; }

Gets/Sets the size of the splitter panel in which the ImageView is
contained.

bool IsCurrentItemTrainable { get; }

Returns true if the Step that is currently selected is a trainable Step.

bool IsCurrentItemTrained { get; }

Returns true if the currently selected Step is trained.

bool IsCurrentItemUntrainable { get; }

Returns true if the currently selected Step can be untrained. This typically
only applies to Data Matrix tools.

List<SetupItem> ItemList

Returns a List of all of the items in the Setup List. Each item is
represented by a SetupItem object, which has properties identifying the
Step for this item, as well as the next Step and the previous Step in the
list.
Visionscape .NET Programmer’s Manual 10-21

Chapter 10 Setup Mode Controls
int ListViewSize { set; get; }

Gets/Sets the size of the splitter pane in which the List View is contained.

SetupManagerOptions Options { set; get; }

Gets/Sets the generic SetupManager options. This property is of type
SetupManagerOptions, the members of which identify the available
options. This is a bitfield, so multiple options can be combined. It is
generally easier to use the OptionIsOn() method to check if a particular
option has been enabled, and it is eaiser to use the OptionSet() method to
turn options on and off. Refer to the “Setup Manager Options” section
earlier in this chapter for a list of the available options.

SetupManagerLayoutOptions OptionsLayout { set; get; }

Gets/Sets a bitfield that controls which elements of SetupManager are
shown/hidden, as well as controlling how some elements are positioned.
Multiple options can be combined. The available options are represented
by the SetupManagerLayoutOptions enum, which has the following fields:

ShowDatumGrid: When set, the datum view will be shown, if cleared, it
will be hidden.

ShowDatumGridOnRight: When set the datum view is positioned on
the right side of the control, if cleared, it is positioned at the bottom of
the control.

ShowStepTree: When set, the Step Tree View is displayed.

ShowToolbar: Clear this bit when you want to hide the toolbar and
create your own.

ShowView: Shows/hides the image view.

ShowItemList: Shows/hides the Setup Item List.

ShowStatusbar: Shows/hides the status bar at the bottom of the
control.

ShowBufStatusbar: Shows/hides the status bar at the bottom of the
Image View.

It is generally easier to use the OptionLayoutIsOn() and
OptionLayoutSet() methods to get and set various options. Refer to the
10-22 Visionscape .NET Programmer’s Manual

The Setup Manager Control

S
et

u
p

 M
o

d
e

C
o

n
tr

o
ls

10
earlier section “Showing, Hiding and Repositioning the Various Elements
of Setup Manager” for examples of how to manipulate this property.

SetupManagerTryoutOptions OptionsTryout { set; get; }

Gets/Sets a bitfield that controls how Tryouts and Image acquisitions are
performed. Multiple options can be combined. The available options are
represented by the values in the SetupManagerTryoutOptions enum,
which has the following fields:

DoAcquire: When set, a new image will be acquired everytime you run a
Tryout. Clear this bit if you want to run a tryout repeatedly on the current
image. This bit is on by default.

UseTriggers: When set, tryouts, acquire and live video will all wait for a
trigger (if one is set in the Snapshot) before acquiring an image. Clear
this bit if you don’t want to wait for triggers before acquring an image.
This bit is off by default.

UseIO: Similar to UseTriggers, but this only effects Tryouts, and will
cause you to block on DigitalInput Steps that have an I/O point assigned
to their “Data Valid Signal I/O” datums. Off by default.

TackImage: When running a Tryout, SetupManager will automatically
update the ImageView to show you the buffer for the currently selected
Step. When this bit is set, the current image is “tacked”, and it will always
show the current image buffer, regardless of what Step is selected. Off by
default.

DefaultOptions = DoAcquire: This represents the default settings,
which is currently to have just the DoAcquire option turned on.

Step RootStep { set; get; }

Use this property to connect the SetupManager control to your Job. You
will typically set the RootStep property to one of the Inspection Steps in
your Job, though you may also connect to the VisionSystem Step or a
Snapshot Step. Once you have assigned a Step to this property,
SetupManager will update itself, and you will be ready to acquire images,
run tryouts, adjust job parameters, etc.

Step SelectedStep { set; get; }

Gets/Sets the Step that is currently selected in the SetupManager.
Visionscape .NET Programmer’s Manual 10-23

Chapter 10 Setup Mode Controls
Methods:

bool Acquire()

Runs a synchronous acquire operation, which means that this function
will not return until the Acquisition is complete. Returns true if the
acquisition was successful. WARNING, if you have activated the
“UseTriggers” option in the OptionsTryout property, and the current
Snapshot has a trigger assigned, this function will block forever until the
trigger is received. If you are unable to send a trigger, this will cause your
application to lock up. If you are planning to use the “UseTriggers” option,
you should never call this function, and should instead use either the
AcquireWithTimeout() function, or start an asynchronous acquisition
using AcquireStart.

bool AcquireActive()

Returns true if there is currently an acquisition operation in process. You
would typically use this method after starting an asynchronous acquisition
with AcquireStart.

bool AcquireStart()

Starts an asynchronous acquisition, and returns immediately. The
acquisition will run on a separate thread, so your application will not be
blocked waiting for it to complete. You can poll to see if the acquisition
has completed by calling the AcquireActive() method, or you can respond
to the StateChanged() event, which will set the AcquireDone flag in the
StateChangedEvent property of the StateChangedEventArgs argument
that is passed to your event handler, as shown below:

void ctlSetup_StateChanged(object sender,
SetupManager.StateChangedEventArgs e)
{
switch(e.StateChangedEvent)
 {
 case StateChangedEvents.AcquireDone:
 Console.WriteLine("Aquisition is complete");

break;
………

Returns true if the acquisition was stated successfully, false if unable to
start. All other operations are not allowed while an acquisition is in
process, i.e. you can’t start Live Video or a run a Tryout.
10-24 Visionscape .NET Programmer’s Manual

The Setup Manager Control

S
et

u
p

 M
o

d
e

C
o

n
tr

o
ls

10
void AcquireStop()

Stops an asynchronous acquisition that was started with the AcquireStart
method.

bool AcquireWithTimeout(int timeout)

Performs a synchronous acquisition, but lets you specify a timeout value,
so you won’t block forever waiting for it to complete. The timeout is
specified in milliseconds. Returns true if the acquisition completed
successfully, false if you timed out.

bool LiveVideoStart()

Puts SetupManager into Live Video mode, and then returns immediately.
Returns true if able to start Live Video, false if not. Images will be
acquired and displayed as fast as possible, all other operations will be
disabled while Live Video is active, i.e., you can’t run tryouts or call one of
the Acquire methods while Live Video is active. Call LiveVideoStop to exit
Live Video mode.

bool LiveVideoStop()

Exits Live Video mode, returns true if successful.

bool OptionIsOn(SetupManagerOptions op)

Checks the Options bitfield property to see if the specified option is on,
and returns true if so, false if not.

bool OptionLayoutIsOn(SetupManagerLayoutOptions lo)

Checks the OptionsLayout bitfield property to see if the specified option is
on, and returns true if so, false if not.

void OptionLayoutSet(SetupManagerLayoutOptions lo, bool bSet)

lo: The layout option whose state you want to change.

bSet: If true, the option is turned on, if false, it is cleared.

Sets the specified bit in the OptionsLayout property, to the specified state.
This method provides an easy way to set and clear various layout options,
rather than having to perform the bit math your self.
Visionscape .NET Programmer’s Manual 10-25

Chapter 10 Setup Mode Controls
void OptionSet(SetupManagerOptions op, bool bSet)

op: The option whose state you want to change.

bSet: If true, the option is turned on, if false, it is cleared.

Sets the specified bit in the Options bitfield property to the specified state.

bool OptionTryoutIsOn(SetupManagerTryoutOptions op)

Returns true if the specified tryout option is currently turned on, false if it is
not.

SetupManagerTryoutOptions
OptionTryoutSet(SetupManagerTryoutOptions op,bool bSet)

op: The option whose state you want to change.

bSet: If true, the option is turned on, if false, it is cleared.

Sets the specified tryout option to the specified state. This provides an
easy way to set and clear tryout options without having to perform
complex bitmath on the OptionsTryout property directly.

bool SelectNextItemInList()

Causes SetupManager to jump from the currently selected Step to the
next item in the Setup List.

bool SelectPrevItemInList()

Causes SetupManager to jump from the currently selected Step to the
previous item in the Setup List.

void SelectStep(Visionscape.Steps.Step step)

Selects the specified Step.

void TrainCurrentItem()

Trains the currently selected Step. Has no effect if the currently selected
Step is not trainable.
10-26 Visionscape .NET Programmer’s Manual

The Setup Manager Control

S
et

u
p

 M
o

d
e

C
o

n
tr

o
ls

10
bool TryoutCurrentItem()

Performs a tryout on the currently selected Step. This will cause the
current Step to run, as well as any other Steps that it is dependent upon.

bool TryoutOneCycle()

Starts an asynchronous tryout operation that will run all of the Steps in the
Setup List for one cycle and then stop. The tryout is started, and then
control is immediately returned to you. Returns true if the tryout was
successfully started. You will receive the TryoutIterationDone event as
well as a StateChanged event when the tryout is complete. The event
handler for the StateChanged event will be passed a
StateChangedEventArgs parameter, and the StateChangedEvent
property will be set to TryoutDone.

The pass/fail status of each Step will be displayed in the Setup List (green
check for pass, red X for fail). All other operations are not allowed while a
Tryout is in process, i.e., you can’t call one of the Acquire methods, or
start Live Video.

bool TryoutStart()

Starts an asynchronous tryout operation that will run all of the Steps in the
Setup List repeatedly until TryoutStop is called. The tryout is started, and
then control is immediately returned to you. Returns true if the tryout was
successfully started. You will receive the TryoutIterationDone event after
each completed cycle. When the tryout is stopped by a call to TryoutStop,
you will receive the StateChanged event when the tryout is fully stopped.
The event handler for the StateChanged event will be passed a
StateChangedEventArgs parameter, and the StateChangedEvent
property will be set to TryoutDone.

The pass/fail status of each Step will be displayed in the Setup List (green
check for pass, red X for fail). All other operations are not allowed while a
Tryout is in process, i.e., you can’t call one of the Acquire methods, or
start Live Video.

bool TryoutStart(int nIterations)

This overloaded version of TryoutStart allows you to specify how many
cycles you want the tryout to run for before exiting.
Visionscape .NET Programmer’s Manual 10-27

Chapter 10 Setup Mode Controls
bool TryoutStop()

Stops an asynchronous tryout, returns true if the tryout was successfully
stopped.

void UntrainCurrentItem()

Untrains the currently selected Step. This currently only applies to Data
Matrix tools.

bool WizardNext()

Runs the current Step, then selects the next Step in the list.

bool WizardPrev()

Changes the selection from the currently selected Step the previous Step
in the list.

void ZoomAuto()

Puts the ImageView into Auto Zoom mode. This will automatically zoom
the image so that it fits entirely within the visible area.

void ZoomIn()

Zooms in on the current image.

void ZoomOne()

Displays the image at a 1 to 1 zoom ratio, meaning that no zoom is
applied.

void ZoomOut()

Zooms out on the current image.

Events:

DatumChanged

Event Handler Function Signature:

void ctlSetup_DatumChanged(object sender,
 SetupManager.DatumEventArgs e)
10-28 Visionscape .NET Programmer’s Manual

The Setup Manager Control

S
et

u
p

 M
o

d
e

C
o

n
tr

o
ls

10
Fired whenever the user changes a datum value in the Datum View. The
modified datum is specified in the DatumEventArgs parameter.

DatumSelected

Event Handler Function Signature:

void ctlSetup_DatumSelected(object sender,
SetupManager.DatumEventArgs e)

Fired whenever the user selects a datum in the Datum View. The selected
Datum is specified in the DatumEventArgs parameter.

JobChanged

Event Handler Function Signature:

void ctlSetup_JobChanged(object sender,
SetupManager.JobChangedEventArgs e)

Fired whenever the job is modified. How the job was modified is identified
by the JobChangedEventArgs parameter, which has a JobChangedEvent
property of the type JobChangedEvents. This enum has the following
possible values:

RootStepChanged

ToolInserted

ToolMoved

ToolToBeDeleted

ToolTrained

LayoutChanged

Event Handler Function Signature:

void ctlSetup_LayoutChanged(object sender,
SetupManager.LayoutChangedEventArgs e)

Fired whenever the OptionsLayout property is modified.

OptionsChanged

Event Handler Function Signature:
Visionscape .NET Programmer’s Manual 10-29

Chapter 10 Setup Mode Controls
void ctlSetup_OptionsChanged(object sender,
SetupManager.OptionsChangedEventArgs e)

Fired whenever the Options property is modified.

StateChanged

Event Handler Function Signature:

void ctlSetup_StateChanged(object sender,
SetupManager.StateChangedEventArgs e)

Fired whenever a major operation has started or completed. Your event
handler will receive a StateChangedEventArgs parameter, which has a
StateChangedEvent property that identifies the state change. This
property is of type StateChangedEvents, which is an enum that identifies
the possible state changes. Refer to the earlier section “Detecting State
Changes” for an example of how to respond to this event, and a list of the
possible state changes.

StepSelected

Event Handler Function Signature:

void ctlSetup_StepSelected(object sender,
SetupManager.SelectionChangedEventArgs e)

Fired whenever the selected Step is changed. The newly selected step is
specified in the SelectionChangedEventArgs parameter.

TryoutIterationDone

Event Handler Function Signature:

void ctlSetup_TryoutIterationDone(object sender,
SetupManager.TryoutIterationDoneEventArgs e)

Fired whenever a tryout iteration completes. When running a single
tryout, this will fire once at the end of the cycle. When running tryouts in a
loop, this event will fire at the end of each cycle. The
TryoutIterationDoneEventArgs parameter will be passed to your event
handler. This object contains a Report property that holds an
InspectionReport object. The InspectionReport holds all of the results that
are selected for upload in the Inspection, as well as the standard counts
and stats. NOTE: The other events related to Tryouts, such as TryoutStart
and TryoutStop, are sent via the StateChanged event. This event is not
10-30 Visionscape .NET Programmer’s Manual

The Setup Manager Control

S
et

u
p

 M
o

d
e

C
o

n
tr

o
ls

10
handled by a StateChanged event, because then we wouldn’t be able to
include the InspectionReport.

TryoutOptionsChanged

Event Handler Function Signature:

void ctlSetup_TryoutOptionsChanged(object sender,
SetupManager.TryoutOptionsChangedEventArgs e)

Fired whenever the OptionsTryout property is modified.

ZoomEvent

Event Handler Function Signature:

void ctlSetup_ZoomEvent(object sender,
SetupManager.ZoomEventArgs e)

Fired whenever the user zooms in or out, or changes the zoom mode to
Auto or 1 to 1 mode.
Visionscape .NET Programmer’s Manual 10-31

Chapter 10 Setup Mode Controls
The StepTreeEditor Control

The StepTreeEditor control allows you to view your Job in its hierarchical
tree structure, and to add or remove Steps. So you would use this control
when you want to allow your users to edit their Jobs. To use this control
you simply connect its RootStep property to one of the Steps in your Job.
The StrepTreeEditor will then display the RootStep and all of the children
beneath it. You would typically connect the RootStep to either your
JobStep or to one of the VisionSystemSteps in your Job. Assuming we
had a JobStep variable named _job, we would connect the
StepTreeEditor to it like this:

//Connect our StepTreeEditor to our JobStep
 ctlStepTree.RootStep = (Step)_job;
10-32 Visionscape .NET Programmer’s Manual

The StepTreeEditor Control

S
et

u
p

 M
o

d
e

C
o

n
tr

o
ls

10
Once connected, the StepTreeEditor would look something like this:

When the user selects a Step in the tree, all of the Datums for that Step
are displayed in the DatumView on the right side of the control. You can
hide the DatumView if you wish using the ShowDatums property.
Visionscape .NET Programmer’s Manual 10-33

Chapter 10 Setup Mode Controls
The user can add or remove Steps by right-clicking on the tree. This will
bring up a context menu that provides options to insert into, before or
after the current Step. Selecting one of these options will cause the “Insert
Step” dialog to be displayed. This dialog allows the user to select which
type of Step they want to add to their Job. Once the Step type is selected,
and OK is pressed, the new Step is added relative to the currently
selected Step. If Insert Into was chosen, the new Step is inserted into the
selected Step (always at the end of the child list). If Insert Before or Insert
After are chosen, the new Step is inserted immediately before or after the
selected Step. The context menu also allows you to rename the current
Step, or delete the current Step.

The StepTreeEditor control exposes the InsertStep method which allows
you to programmatically launch the Insert Step dialog. This would allow
you to create a toolbar for the StepTreeEditor if you wished, with buttons
to represent the Insert Into, Before and After options.

Following is a complete list of the Properties, Methods and Events of the
StepTreeEditor control.

Properties:

Visionscape.Steps.Step RootStep { set; get; }

Connect the StepTreeEditor to your Job using this property. When this
property is set, the control will update to display this Step as the root of
the tree, with all of its child Steps displayed hierarchically beneath it. You
would typically set the RootStep to either your JobStep or to a
VisionSystemStep.

Step SelectedStep { set; get; }

Gets/Sets the Step that is currently selected in the tree.

bool ShowDatums { set; get; }

Set to true if you want the Datum View to be displayed, set to false if you
want it hidden.

bool ShowDatumsInTree { set; get; }
10-34 Visionscape .NET Programmer’s Manual

The StepTreeEditor Control

S
et

u
p

 M
o

d
e

C
o

n
tr

o
ls

10
Set to true if you want all of the Datums for each Step to also be displayed
in the tree. Set to false if you only want to see Steps in the tree, which is
the default behavior.

int SplitterDistance { set; get; }

Gets/sets the distance in pixels from the left edge of the control to the
splitter that separates the tree from the Datum View.

Methods:

void EditStep(Visionscape.Steps.Step step)

Connects the control to the specified Step. This is identical to setting the
RootStep property.

void InsertStep(InsertStepOption option)

Starts an Insert Step opertation. This causes the “Insert Step” dialog to be
launched, which allows your user to select the type of Step they want to
insert. The selected Step will then be created and added to the Job
relative to the currently selected Step. Where the newly added Step is
inserted depends on the option parameter. The option parameter is of
type InsertStepOption, which provides 3 options.

InsertStepOption.Into: Inserts the new Step into the currently selecte
Step, and the end of its child list.

InsertStepOption.After: Inserts the new Step immediately after the
selected Step.

InsertStepOption.Before: Inserts the new Sep immediately before the
selected Step.

void RefreshTree()

Forces the control to rebuild and redisplay its tree. You might call this if
you are modifying the Job programmatically outside of the
StepTreeEditor, and want to force your changes to be seen in the tree.

void SelectStep(Visionscape.Steps.Step step)

Sets the selected Step in the tree to the specified Step.
Visionscape .NET Programmer’s Manual 10-35

Chapter 10 Setup Mode Controls
Events:

DatumChanged

Event Handler Function Signature:

void ctlStepTree_DatumChanged(Step step, Datum dat)

Fired whenever the user changes a Datum value in the Datum view. The
Datum that was modified, and its owning Step, are passed to your event
handler.

DatumSelected

Event Handler Function Signature:

void ctlStepTree_DatumSelected(Step step, Datum dat)

Fired whenever the user selects a Datum in the Datum view. The Datum
that was selected, and its owning Step, are passed to your event handler.

StepInserted

Event Handler Function Signature:

void ctlStepTree_StepInserted(Step step)

Fired whenever a new Step is inserted into the Job. A reference to the
newly inserted Step is passed to your event handler.

StepRenamed

Event Handler Function Signature:

void ctlStepTree_StepRenamed(Step step)

Fired whenever the name of a Step is changed.

StepSelected

Event Handler Function Signature:

void ctlStepTree_StepSelected(Step step)

Fired whenever a new Step is selected in the tree. A reference to the
newly selected Step is passed to your event handler.
10-36 Visionscape .NET Programmer’s Manual

The StepTreeEditor Control

S
et

u
p

 M
o

d
e

C
o

n
tr

o
ls

10
StepToBeDeleted

Event Handler Function Signature:

void ctlStepTree_StepToBeDeleted(Step step)

Fired whenever a Step is about to be deleted. A reference to the Step is
passed to your event handler.
Visionscape .NET Programmer’s Manual 10-37

Chapter 10 Setup Mode Controls
10-38 Visionscape .NET Programmer’s Manual

Visionscape .NET Programmer’s Manual A-1

A

L
o

ad
in

g
 a

n
d

 R
u

n
n

in
g

Jo

b
s

A

APPENDIX A Loading and Running Jobs

Loading and Running Jobs, Receiving Results and Images

In this C# example we will walk you step by step through the process of
building a very simple user interface. This example will demonstrate the
following:

• Loading a Job (AVP file) from Disk.

• Connecting that Job to a Visionscape Device.

• Running the Job.

• Creating a report connection to handle images and results.

• Displaying the images and results at runtime.

Getting Started

– Launch Visual Studio 2008.

– From the File Menu, choose “New Project…”

– In the New Project dialog, choose “Visual C#” as your language,
and then choose “Windows Forms Application” as your project
type.

– Enter “VisionscapeSample” for the project name, and press OK.

Appendix A Loading and Running Jobs

A-2 Visionscape .NET Programmer’s Manual

Add References to your project

– Go to the Project menu and select “Add Reference…”. In the
“Add a Reference” dialog, under the “.NET” tab, add references
to the following Visionscape assemblies:

– Go to the View menu and select “Toolbox”. This will show the
toolbox panel on the left-hand side of the window. If Visual Studio
2008 was installed on your PC when you installed Visionscape,
then you should have a tab named “Visionscape”, and it will
contain all of the visual components provided by Visionscape. If
you don’t have this tab, you can run the InstallCtrlsToToolbox.bat
utility to install them.

Loading and Running Jobs, Receiving Results and Images

L
o

ad
in

g
 a

n
d

 R
u

n
n

in
g

Jo

b
s

A

Visionscape .NET Programmer’s Manual A-3

Rename the Main Form

– Change the name of “Form1.cs” in your Project to “frmMain.cs”

Add Components to the Main Form

In this example we will display an image using our BufferView control, and
we will display the uploaded inspection results using our ReportView
control. We will insert the two controls into a Splitter Control, so the user
can adjust the size of each.

Add Split Container, BufferView and ReportView

– Add a “Split Container” control to the main form. This control is
found in the “Containers” tab of the ToolBox, as shown above.

Appendix A Loading and Running Jobs

A-4 Visionscape .NET Programmer’s Manual

– Drag a BufferView control from the Toolbox to Panel1 of the
SplitContainer. This should be found in the “Visionscape” tab of
the Toolbox, as shown below:

• Change the following properties:

– Drag a ReportView control from the Toolbox to Panel2 of the
SplitContainer. We will use this to display reports from the running
inspections. This component is also found in the Visionscape tab
of the Toolbox, as shown below:

• Change the following properties:

Property Name Value

(Name) ctlBufView

Dock Fill

Property Name Value

(Name) ctlReportView

Dock Fill

Loading and Running Jobs, Receiving Results and Images

L
o

ad
in

g
 a

n
d

 R
u

n
n

in
g

Jo

b
s

A

Visionscape .NET Programmer’s Manual A-5

Add the Code

Go to the frmMain code window. At the top of the file, we will add the
following “using” statements for the various Visionscape namespaces we
will be accessing:

using Visionscape;
using Visionscape.Steps;
using Visionscape.Devices;
using Visionscape.Communications;

At the top of the frmMain class, add the following member variables:

public partial class frmMain : Form
{ /////////////////////
//CONSTANTS
const int RESULTS_ROW = 6;

//////////////////////
//MEMBER VARIABLES

 //VsCoordinator tells us what hardware is available

VsCoordinator m_Coord;
VsDevice m_Dev; //will hold a ref to the chosen Device
JobStep m_Job; //A JobStep loads and saves AVPs
VisionSystemStep m_VS; //the VisionSystem step
//We will use this object to receive images and results
//from the inspection
ReportConnection m_repcon;
//reference to the most recent inspection report
InspectionReport m_report;
//We will use this to save/restore application settings
Properties.Settings m_appsettings;

Application Startup

When our application starts up, we will load one of the Sample Jobs that
is installed with Visionscape. We will connect it to the Software System in
your PC (always created) and then prepare it to run. In frmMain’s Load
event, we will need to do the following:

1. Instantiate our VsCoordinator and JobStep objects.

2. Load the Job from disk.

3. Get a reference to the Software System.

Appendix A Loading and Running Jobs

A-6 Visionscape .NET Programmer’s Manual

4. Connect the Job to the Software system by downloading to it.

5. Run the inspection.

6. Connect our report connection, so we can receive images and results
at runtime.

Add an event handler for frmMain’s Load event, and add the following
code:

private void frmMain_Load(object sender, EventArgs e)
{
 //instantiate our coordinator and Job Step
 m_Coord = new VsCoordinator();
 m_Job = new JobStep();
 try
 {
 //load the sample AVP
 m_Job.Load("C:\\Vscape\\Tutorials and samples\\

Sample Jobs\\Wrench
Gauge\\example_wrenchgauge.avp
");

 //Now get a reference to the Software system
m_Dev = _coord.FindDeviceByName("SoftSys1");

 //connect the job to hardware
 m_Dev.Download(_job.VisionSystemStep(), 1);

 //Start the inspection running
m_Dev.StartAll();

 //Connect our report connection
 ConnectReport();

 }
 catch (Exception ex)
 {
 MessageBox.Show("Exception thrown while starting up:
" + ex.Message);
 this.Close();
 }
}

Loading and Running Jobs, Receiving Results and Images

L
o

ad
in

g
 a

n
d

 R
u

n
n

in
g

Jo

b
s

A

Visionscape .NET Programmer’s Manual A-7

Making Report Connections

Add the ConnectReport function that we are calling from frmMain_Load.
This function will instantiate our ReportConnection, connect it to our
device, and configure it to upload images.

private void ConnectReport()
{
 //Create a report connection
 m_repcon = new ReportConnection();
 //Connect it to the first inspection on our device

m_repcon.Connect(_device, 1);

 //We want images to be included in our report,
 //so add them now.
 //Find the first Inspection step
 InspectionStep insp =

m_Job.VisionSystemStep().FindByType("Step.Inspection")
as InspectionStep;

 //Add all snapshot buffers in this inspection to the report
m_repcon.AddSnapBuffers(insp);

 //lastly, we need to wire up our event handler
m_repcon.NewReport += m_repcon_NewReport;

}

Handling Reports

Now that we can receive reports, in this section we will add the code to
handle them. Our NewReport event handler will receive an inspection
cycle report, and we will then display the first image in our BufferView
control, and display the inspection data in our ReportView.

//This event will be received after every inspection cycle
void _m_repcon_NewReport(object sender,

ReportConnectionEventArgs e)
{
 InspectionReport report = e.Report;

 //display the first image in our BufferView control
 if(report.Images.Count > 0)
 {
 ctlBufView.Buffer = report.Images[0] as BufferDm;
 }

 //display the report data in our ReportView control

Appendix A Loading and Running Jobs

A-8 Visionscape .NET Programmer’s Manual

 ctlReportView.Report = report;
}

Handling Application Shut Down

When our application shuts down, we need to make sure that we
disconnect our ReportConnection, and stop the running inspection. To do
this, add the following code to the FormClosing event handler:

private void frmMain_FormClosing(object sender,
FormClosingEventArgs e)

{
 //Disconnect the report connection
 if m_repcon.IsConnected
 {
 m_repcon.Disconnect();
 }

 //Stop the running inspections
 _device.StopAll();
}

Compile and Run

You should now be able to build the project, and run it. When your
application runs, you should see something like this:

Loading and Running Jobs, Receiving Results and Images

L
o

ad
in

g
 a

n
d

 R
u

n
n

in
g

Jo

b
s

A

Visionscape .NET Programmer’s Manual A-9

Additional Samples

This application is obviously not production level, but it hopefully
illustrates the fundamentals involved with creating a Visionscape runtime
user interface. If you would like to look at a more complete sample, look at
the two samples that are installed with VsKit.NET

LoadAndRun:

This sample is a basic runtime user interface that provides the following
features:

• Provides a toolbar that lists all available devices, and allows you to
choose the device you want to work with.

• Provides a toolbar button that allows you to load any AVP file to your
chosen device. This illustrates the cleanup that is required when
switching from one job to another.

• Rather than displaying the results in a ReportView control, we use a
standard .NET DataGridView control and illustrate how you can walk
all of the results of a report and populate a grid yourself.

LoadRunAndSetup:

This sample builds on the LoadAndRun sample by adding both a Run
Mode and Setup Mode. It illustrates the following concepts:

• How to implement a Setup Mode in your program using the
SetupManager control.

• Illustrates a simple class that can be used to handle report
connections for multiple inspections.

• Illustrates a simple control that can display multiple images at
runtime. Up to four.

• Illustrates how to take control of a smart camera.

Appendix A Loading and Running Jobs

A-10 Visionscape .NET Programmer’s Manual

	Visionscape® .NET Programmer’s Manual
	Contents
	PREFACE Welcome
	Purpose of This Manual
	Manual Conventions

	CHAPTER 1 Introduction
	Visionscape® Architecture
	Visionscape® Devices
	Programming Language Considerations
	Visual Studio 2008

	The Big Picture

	CHAPTER 2 Jobs, Steps, and Datums
	Introduction to the Visionscape.Steps namespace
	Jobs and Job Files
	Steps
	Datums
	Important Step Types
	JobStep:
	VisionSystemStep:
	Inspection Step:
	Snapshot Step:
	Acquire Step:

	Visionscape.Steps and The Step Object
	JobStep
	The Step Object
	Steps Are Collections
	The Step Object Provides Many Properties That Describe the Step
	The Step Object Has Many Methods for Finding Child Steps
	The Step Object can Add and Remove Steps From Your Job
	Every Step Contains a Collection of Datums

	The Major Properties That Describe A Step
	Finding Steps in the Step Tree
	Adding and Removing Steps
	Accessing a Step’s Datum Values
	Modifying Datum Values
	Using StepBrowser to Look Up Symbolic Names
	The JobStep Object
	The VisionSystemStep Object
	Step Object Properties
	Step Object Methods
	Datum Object Properties
	Datum Object Methods
	Step Handles: Converting to Step Objects

	CHAPTER 3 Talking to Visionscape Hardware: VsCoordinator and VsDevice
	Introduction to the Visionscape.Devices Namespace
	VsCoordinator
	VsDevice
	VsCoordinator and Device Discovery
	How Devices are Discovered
	Waiting for Device Discovery by Using “Device Focus”

	Connecting Jobs to Visionscape® Devices
	What Else Can I Do With Device Objects?

	A Detailed Look at VsDevice
	Device Control Functions
	Start / Stop Inspections
	Downloading a Job
	Uploading a Job

	Obtaining Device Information
	Basic Device Information
	DeviceClass Property
	IsHostBased Property
	Determining if any Inspections are Running
	Determining if a Particular Inspection is Running
	Device States
	Special Device States
	Determining the I/O Capabilities of a Device
	UDPInfo Available for Networked Devices
	Retrieving Basic information on the Loaded Job
	Namespace Information
	VsNameNode
	VsNameNode Properties
	VsNameNode Methods

	A Detailed Look at VsCoordinator
	Device Collection
	DeviceFocusSet
	Device Focus Property
	DeviceFocusSetOnDiscovery
	Finding a Device by Name or IP
	OnDeviceDiscovered Event
	Using Message Broadcasting to Simplify Application Design
	UpdateUI Method
	LogMessage and the Debug Window
	Getting Information About Local Network Interface Controllers
	VsCoordinator Reference
	Device Enumeration and Device Focus
	UI Coordination
	Miscellaneous
	VsDevice Reference
	Download / Upload Job
	Control
	Advanced

	CHAPTER 4 Receiving Data with Report Connections
	Introduction to the Visionscape.Communications namespace
	ReportConnection Object:
	Creating a Report Connection
	Connection Details

	The NewReport Event
	Adding Records to Your Report Programmatically
	DataRecordAdd Examples

	Adding Images to Your Report
	Adding All of the Snapshot Images in an Inspection to the Report
	AddSnapBuffers Examples
	Now I Have Images, How Do I Display Them?

	Performance Considerations
	Lossy vs Lossless
	Don’t Spend too much time in the NewReport event handler
	Separate ReportConnections for Images and Results

	The InspectionReport Object
	ReportInspectionStats Object
	InspectionReportValue Object
	ReportMemoryInfo object
	Handling Reports on Separate Threads
	Create the ThreadedResults Class
	Use the ThreadedResults Class in the Form

	Report Queue Connections
	ReportQueueConnection Object

	CHAPTER 5 I/O Capabilities
	The IOConnection Object
	I/O Basics
	How to Use IOConnection
	Properties and Methods of IOConnection
	Events

	CHAPTER 6 Image Display Controls
	Adding the Controls to the Visual Studio Toolbox
	The BufferView Control
	The Filmstrip Control
	Properties and Methods of Filmstrip

	CHAPTER 7 Device Selection Controls
	Adding the Controls to the Visual Studio Toolbox
	The DeviceDropdown Control
	The ToolStripDeviceDropdown Control

	CHAPTER 8 Report Display Controls
	Adding the Controls to the Visual Studio Toolbox
	The ResultsView Control
	The StatsView Control
	The ReportView Control
	The IOView Control
	The IOTriggerView Control

	CHAPTER 9 Runtime Utility Controls
	Adding the Controls to the Visual Studio Toolbox
	The QueueView Control

	CHAPTER 10 Setup Mode Controls
	Adding the Controls to the Visual Studio Toolbox
	The Setup Manager Control
	Adjusting the Tryout Options
	DoAcquire
	UseTriggers
	UseIO
	TackImage
	DefaultOptions = DoAcquire

	Checking the Current State of the Control Using the “Can” Property
	Detecting State Changes
	Properties, Methods and Events
	Methods

	The StepTreeEditor Control

	APPENDIX A Loading and Running Jobs
	Loading and Running Jobs, Receiving Results and Images
	Getting Started
	Add References to your project
	Rename the Main Form
	Add Components to the Main Form
	Add Split Container, BufferView and ReportView

	Add the Code
	Application Startup
	Making Report Connections
	Handling Reports
	Handling Application Shut Down
	Compile and Run
	Additional Samples

