Copyright and Disclaimer

Copyright ©2009
by Microscan Systems, Inc.
1201 S.W. 7th Street, Renton, WA, U.S.A. 98057
(425) 226-5700 FAX: (425) 226-8682

ISO 9001:2000 Certified Quality Management System
Issued by TUV USA Inc., Member of TUV NORD Group, Cert. No. 06-1080

All rights reserved. The information contained herein is proprietary and is provided solely for the purpose of allowing customers to operate and/or service Microscan manufactured equipment and is not to be released, reproduced, or used for any other purpose without written permission of Microscan.

Throughout this manual, trademarked names might be used. Rather than place a trademark (™) symbol at every occurrence of a trademarked name, we state herein that we are using the names only in an editorial fashion, and to the benefit of the trademark owner, with no intention of infringement.

Disclaimer

The information and specifications described in this manual are subject to change without notice.

Latest Manual Version

For the latest version of this manual, see the Download Center on our web site at: www.microscan.com.

Technical Support

For technical support, email: helpdesk@microscan.com.

Microscan Systems, Inc.
Renton Headquarters
1201 S.W. 7th St.
Renton, WA 98057-1213
USA
Tel: 425.226.5700 / 800.762.1149
Fax: 425.226.8250

Nashua Office
486 Amherst St.
Nashua, NH 03063
USA
Tel: 603.598.8400
Fax: 603.577.5947

Microscan Europe
Tel: 011 31 172 423360
Fax: 011 31 172 423366

Microscan Asia Pacific
Tel: 65 6846 1214
Fax: 65 6846 4641
Microscan Limited Warranty Statement and Exclusions

What Is Covered?

Microscan Systems Inc. warrants to the original purchaser that products manufactured by it will be free from defects in material and workmanship under normal use and service for a period of one year from the date of shipment. This warranty is specifically limited to, at Microscan's sole option, repair or replacement with a functionally equivalent unit and return without charge for service or return freight.

What Is Excluded?

This limited warranty specifically excludes the following: (1) Any products or parts that have been subject to misuse, neglect, accident, unauthorized repair, improper installation, or abnormal conditions or operations; (2) Any products or parts that have been transferred by the original purchaser; (3) Customer mis-adjustment of settings contrary to the procedure described in the Microscan Systems Inc. owners manual; (4) Upgrading software versions at customer request unless required to meet specifications in effect at the time of purchase; (5) Units returned and found to have no failure will be excluded; (6) Claims for damage in transit are to be directed to the freight carrier upon receipt. Any use of the product is at purchaser's own risk. This limited warranty is the only warranty provided by Microscan Systems Inc. regarding the product. Except for the limited warranty above, the product is provided “as is.” To the maximum extent permitted by law, this express warranty excludes all other warranties, express or implied, including but not limited to, implied warranties of merchantability and fitness for a particular purpose. Microscan Systems Inc. does not warrant that the functions contained in the product will meet any requirements or needs purchaser may have, or that the product will operate error free, or in an uninterrupted fashion, or that any defects or errors in the product will be corrected, or that the product is compatible with any particular machinery.

Limitation of Liability

In no event shall Microscan Systems Inc. be liable to you or any third party for any special, incidental, or consequential damages (including, without limitation, indirect, special, punitive, or exemplary damages for loss of business, loss of profits, business interruption, or loss of business information), whether in contract, tort, or otherwise, even if Microscan Systems Inc. has been advised of the possibility of such damages. Microscan Systems Inc.'s aggregate liability with respect to its obligations under this warranty or otherwise with respect to the product and documentation or otherwise shall not exceed the amount paid by you for the product and documentation. Some jurisdictions do not allow the exclusion or limitation of incidental or consequential damages or limitations on an implied warranty, so the above limitation or exclusion may not apply to you. This warranty gives you specific legal rights, and you may also have other rights which may vary from state to state.
Table of Contents

Chapter 1 Quick Start
- Step 1 Check Hardware ... 1-2
- Step 2 Connect the System ... 1-3
- Step 3 Install ESP ... 1-4
- Step 4 Select Model ... 1-5
- Step 5 Autoconnect .. 1-6
- Step 6 Position the Reader .. 1-7
- Step 7 Configure the Reader .. 1-8
- Step 8 Save Configuration in ESP .. 1-9

Chapter 2 Using ESP
- EZ Mode ... 2-2
- Application Mode .. 2-3
- Menu Toolbar ... 2-4
- Autoconnect ... 2-12
- View .. 2-14
- Navigating in ESP .. 2-15
- Send/Receive Options .. 2-16

Chapter 3 Communications
- Communications by ESP ... 3-2
- Communications Serial Commands ... 3-3
- Host Port Connections .. 3-4
- Host Port Protocol ... 3-5
- Preamble .. 3-6
- Postamble .. 3-7

Chapter 4 Read Cycle
- Read Cycle by ESP .. 4-2
- Read Cycle Serial Commands .. 4-3
- MS-2 Read Cycle Overview .. 4-4
- Number of Symbols .. 4-5
- Time Between Identical Decodes .. 4-6
- Trigger Mode ... 4-7
- Continuous Read 1 Output Emulation 4-9
- Serial Trigger Character (Delimited) 4-10
- Start Trigger Character (Non-Delimited) 4-11
- Stop Trigger Character (Non-Delimited) 4-12
- No Decode Timeout .. 4-13
- Decodes Before Output ... 4-14
- No Read Message .. 4-15
- Reader Setup ... 4-16

Chapter 5 Symbologies
- Symbologies by ESP .. 5-2
About the MS-2 CCD Reader

About the MS-2 CCD Reader

The key features of the MS-2 CCD Reader are:
• Ultra-compact size
• CCD image sensor
• LED illumination
• No moving parts
• Low power draw (voltage: 5V; current: 150 mA)
• ESP and K command support
• Up to 220 scans per second
• 0.8 to 12.8” (20 to 325 mm) read range
• High Density and Low Density options
• Integrated right-angle option
• LED status indicators
• IP54-rated enclosure
• RS-232 connectivity

About This Manual
This manual provides complete information on setting up, installing, and configuring the MS-2 CCD Reader. The sections are presented in the order in which a reader might be set up and made ready for operation.

Highlighting
Serial commands, highlighted command fields, and default command settings are highlighted in rust bold. Cross-references and web links are highlighted in blue bold. References to ESP, its toolbar headings (Communications, Read Cycle, Symbologies, etc.), menu topics, and other points of emphasis, are highlighted in Bold Initial Caps.

Host Communications
There are two ways to configure and test the MS-2 CCD Reader:
• Microscan’s Windows-based ESP (Easy Setup Program) Software, which offers point-and-click ease of use and visual responses to user adjustments.
• Serial commands, such as <K200,0>, that can be sent from ESP’s Terminal or another terminal program.
Warning and Caution Summary

WARNING

LED LIGHT
DO NOT VIEW DIRECTLY WITH OPTICAL INSTRUMENTS
CLASS 1 LED PRODUCT WITH CLASS 1 INTERNAL RADIATION
Maximum LED Output: 141.2µW

• Viewing the MS-2’s LED output with optical instruments such as magnifiers, eye loupes, or microscopes within a distance of 100 mm could cause serious eye injury.
• Maximum LED output: 141.2µW
• Location of the MS-2’s LED aperture window:

CAUTION: Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

IMPORTANT: The MS-2 is intended for connection to a UL-listed direct plug-in power unit marked Class II and rated 5 VDC at 3.5 Watts, or greater if using electrical accessories. European models must use a similarly rated Class I or Class II power supply that is certified to comply with safety standard EN 60950.
Statement of Agency Compliance

The MS-2 has been tested for compliance with FCC (Federal Communications Commission) regulations and has been found to conform to all applicable FCC Rules and Regulations. To comply with FCC RF exposure compliance requirements, this device must not be co-located or operate in conjunction with any other antenna or transmitter. Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

The MS-2 has been tested for compliance with CE (Conformité Européenne) standards and guidelines, and has been found to conform to applicable CE standards, specifically the EMC requirements EN 55024:1998+A1:2001+A2:2003, ESD EN 61000-4-2, Radiated RF Immunity EN 61000-4-3, ENV 50204, EFT EN 61000-4-4, Conducted RF Immunity EN 61000-4-6, EN 55022:1998+A1:2000+A2:2003 for Class A products, Class B Radiated Emissions, and Class B Conducted Emissions.

The MS-2 has been tested by an independent electromagnetic compatibility laboratory in accordance with the applicable specifications and instructions.
Statement of RoHS Compliance

All Microscan readers with a ‘G’ suffix in the FIS number are RoHS-Compliant. All compliant readers were converted prior to March 1, 2007. All standard accessories in the Microscan Product Pricing Catalog are RoHS-Compliant except 20-500013-01 and 98-000039-02. These products meet all the requirements of the European Parliament and the Council of the European Union for RoHS compliance. In accordance with the latest requirements, our RoHS-compliant products and packaging do not contain intentionally added Deca-BDE, Perfluorooctanes (PFOS) or Perfluorooctanoic Acid (PFOA) compounds above the maximum trace levels. To view the documents stating these requirements, please visit:

and

Please contact your sales manager for a complete list of Microscan’s RoHS-Compliant products.

This declaration is based upon information obtained from sources which Microscan believes to be reliable, and from random sample testing; however, the information is provided without any representation of warranty, expressed or implied, regarding accuracy or correctness. Microscan does not specifically run any analysis on our raw materials or end product to measure for these substances.

The information provided in this certification notice is correct to the best of Microscan’s knowledge at the date of publication. This notice is not to be considered a warranty or quality specification. Users are responsible for determining the applicability of any RoHS legislation or regulations based on their individual use of the product.
1 Quick Start

Contents

Step 1 Check Hardware .. 1-2
Step 2 Connect the System .. 1-3
Step 3 Install ESP .. 1-4
Step 4 Select Model ... 1-5
Step 5 Autoconnect .. 1-6
Step 6 Position the Reader .. 1-7
Step 7 Configure the Reader ... 1-8
Step 8 Save Configuration in ESP ... 1-9

This section is designed to get your MS-2 CCD Reader up and running quickly using ESP (Easy Setup Program). Following these steps will allow you to get a sense of the reader’s capabilities and to test symbol decode performance. Detailed setup information for installing the reader into your application can be found in the subsequent sections.
Check Hardware

Step 1 — Check Hardware

Caution: Be sure that all cables are connected **BEFORE** applying power to the system. Always power down **BEFORE** disconnecting any cables.

USB Hardware

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MS-2 CCD Reader</td>
<td>FIS-0002-000XG</td>
</tr>
<tr>
<td>2</td>
<td>IC-3USB Interface Kit</td>
<td>98-000051-01</td>
</tr>
</tbody>
</table>

RS-232 Hardware

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MS-2 CCD Reader</td>
<td>FIS-0002-000XG</td>
</tr>
<tr>
<td>2</td>
<td>IC-332 Adapter</td>
<td>FIS-0001-0035G</td>
</tr>
<tr>
<td>3</td>
<td>IB-131 Interface Box</td>
<td>99-000018-01</td>
</tr>
<tr>
<td>4</td>
<td>Power Supply (90-264 VAC, 24VDC, USA/Euro plug)</td>
<td>97-100004-15</td>
</tr>
<tr>
<td>5</td>
<td>Object Detector</td>
<td>99-000017-01</td>
</tr>
<tr>
<td>6</td>
<td>Communication Cable</td>
<td>61-300026-03</td>
</tr>
</tbody>
</table>
Step 2 — Connect the System

Caution: Be sure that all cables are connected BEFORE applying power to the system. Always power down BEFORE disconnecting any cables.

Connecting by USB
- Connect the reader (1) to the IC-3USB Interface Kit (2).
- Connect the IC-3USB Interface Kit (2) to the host computer.
The reader is powered by the USB connection.

Connecting by RS-232
- Connect the reader (1) to the IB-131/IC-332 interface (2) and (3).
- Connect the host cable (6) to the host and to the host port on the IB-131 (3).
- Connect the object detector (5) to the IB-131 (3).
- Connect the power supply (4) to the IB-131 (3).
- Apply power to the reader.
Install ESP

Step 3 — Install ESP

Easy Setup Program (ESP) is Microscan’s proprietary setup and testing application. The purpose of ESP is to provide a quick and easy way to set up and configure Microscan readers.

When the MS-2 is connected to a host computer (Windows Vista, XP, or 2000), ESP can be used to configure reader settings and to set up communications between the reader and host.

If installing from the Microscan Tools CD:
1. Insert the Microscan Tools CD in your computer’s CD drive.
2. Select **ESP Software** from the navigation bar at the left of the screen.
3. Click on **ESP Software** under the **Current Version** heading.
4. Click the **Run** button and follow the prompts in the **ESP** Setup Wizard.
 Note: During installation, you may see an Internet Explorer Security Warning that states: “The publisher could not be verified.” If you see this warning, click **Run** to continue installation.

If downloading from the web:
1. Go to the Download Center at www.microscan.com.
2. Create a new member account or, if you are already a member, enter your user name and password.
3. Navigate to the “Microscan Software” section of the Download Center (near the top of the page).
4. Click on the link showing the latest version of ESP. Extract the ESP installation files to a location of your choice on the host computer. **Note where your ESP.exe file is stored on your hard drive.**
5. At the end of the installation process, the following icon will appear on your desktop:

![ESP Icon](https://www.microscan.com/esp_icon.png)

6. Click the **ESP** icon to start the program.

System Requirements for ESP
- 166 MHz Pentium processor (recommended)
- Windows Vista, XP, or 2000 operating system
- Internet Explorer 5.0 or higher
- 64 MB minimum RAM
- 40 MB minimum disk space
- 800 x 600 pixel minimum 256 color display
Step 4 — Select Model

When you start ESP, the following menu will appear:

1. Click the button showing the MS-2.
2. Click **OK**.
 Note: You can also double-click the MS-2 button to make your selection.
3. Click **Yes** when this dialog appears:

 ![ESP dialog]

 Note: If you need to select another model later, click the **Switch Model** button near the top of the screen or use **Model > New Model** in the menu toolbar.
Autoconnect

Step 5 — Autoconnect

- Click **Start** when the **Autoconnect** dialog appears.

![Autoconnect dialog](image)

- If your communications port is not the default **COM1**, use the dropdown menu to change your port.

![Port selection](image)

- Once you have chosen the correct port, click **Start** to connect.

![Connection status](image)

When you are connected, you will see the green connection indicator in the status bar at the bottom right of your screen:

![Connected status](image)

- If the connection attempt fails, click the **Autoconnect** button, select a different communications port, and try again.

![Connection settings](image)

Note: If your RS-232 or USB host settings cannot be changed to match the reader's settings, select **Connect** from the **Connect** dropdown menu on ESP's menu toolbar. When the **Connection Settings** dialog appears, check the **Force Connect** box and click the **Connect** button.
Step 6 — Position the Reader

- Set up a symbol at the distance you will be using in your application. Refer to the **Read Ranges** for your MS-2 model (High Density or Low Density) to determine the optimal distance.

 Note: If you are using an Interleaved 2 of 5 symbol, verify that the number or characters being scanned matches the symbol length enabled for I 2/5 (default is 10 and 6).

- Avoid bright light or infrared light from other sources, including other readers.

- Pitch the reader or symbol at a minimum of ±15° to avoid specular reflection (the return of direct, non-diffused light).

- Avoid excessive skew or pitch. Maximum skew is ±30°; maximum pitch is ±30°.

Note: Code 39 is the default symbology enabled. If you are uncertain of your symbology, perform the following steps:

1. Enable all symbologies using **ESP**.

2. Enable **Symbology Identifier** at the bottom of ESP’s **Symbologies** tree control.

3. Decode the symbol and compare the symbology identifier character to the list on page 5-20 to determine your symbology.

4. Disable all other symbologies.
Configure the Reader

Step 7 — Configure the Reader

To make setup changes to the reader, click the **App Mode** button.

The following modes are accessible by clicking the buttons in the first row of **App Mode** icons:

- Click the **Autoconnect** button to establish communications between **ESP** and the reader.
- Click the **Send/Recv** button to send or receive commands.
- Click the **Terminal** button to display decoded symbol data, and to send serial commands to the reader using text or macros.
- Click the **Utilities** button to test Read Rate, request or clear Counters, enable or disable the reader or send output pulses in Device Control, determine the Differences from Default in the current settings, add or remove master symbol data in Master Database, and verify or update the reader’s firmware.

Click the **Configuration** button to display the second row of **ESP** icons.

From here you can make changes in the tree controls that can be accessed by clicking the buttons on the second row of icons in the **ESP** window.

For further details, see **Microscan ESP Help** in the dropdown Help menu.
Step 8 — Save Configuration in ESP

To make changes to a configuration setting:

1. **Left-click** on the + to expand the desired tree.

2. **Double-click** on the desired parameter and click once in the selection box to view options.

3. Place your cursor in the selection box, scroll down to the setting you want to change, and **click** once on the setting.

4. **Left-click** again on the open screen to complete your selection.

5. **Right-click** on the open screen and select **Save to Reader** to implement the command in the reader.

Saving Options

- **Send, No Save.** Changes will be lost when power is re-applied to the reader.
- **Send and Save.** This activates all changes in current memory and saves to the reader for power-on.
Save Configuration in ESP
This section is designed to help you understand the basic structure and elements of ESP (Easy Setup Program).

When you open ESP, unless otherwise specified in the ESP Preferences dialog accessible from the Options heading on the menu toolbar, you will enter EZ Mode for initial setup. From there, you can enter Application Mode (App Mode) and access three configuration menus (Communications, Read Cycle, and Symbologies), a Terminal interface, and a Utilities interface.

ESP can be used to configure the MS-2 CCD Reader in three main ways:

• **Tree Controls:** Each configuration menu contains a list of all option settings that pertain to that specific element of reader operation. For example, the Communications menu shows a Host Port Connections option, and then a list of the sub-options Baud Rate, Parity, Stop Bits, and Data Bits. Each of these sub-options is configurable by using dropdown menus.

• **Graphic User Interfaces:** Reader settings can be configured using such point-and-click tools as radio buttons, zoom in/zoom out sliders, spin boxes, check boxes, and drag-and-drop functions.

• **Terminal:** ESP’s Terminal allows you to send serial configuration and utility commands directly to the reader by typing them in the provided text field.

Information about using ESP in specific applications is provided in subsequent sections.

For ESP system requirements, see System Requirements for ESP in Chapter 1, Quick Start.
EZ Mode

EZ Mode offers instructions on positioning the reader in relation to a test symbol, and also features an [Autodiscriminate](#) function that automatically enables all symbologies.

Welcome to Easy Setup Program

1. Position your reader at the distance from the symbol recommended by the specifications for the unit.

2. To avoid specular reflection, pitch the reader or the symbol 15 degrees.

Enter **App Mode** to access configuration trees and other setup features.

If you are unsure what type of symbology you are using, click **Autodiscriminate** to enable all symbologies.
Application Mode

From EZ Mode, you can click on the App Mode button to access specific configuration menus, Utilities tools, Camera setup, Output Format options, and a Terminal window where serial commands can be entered.

Note: The App Mode and EZ Mode buttons appear in the same position to allow easy switching between these primary modes.

Note: See the corresponding sections in this manual for specific information on any of the views or modes mentioned above.
Menu Toolbar

File > New

Whenever New is selected, the default configuration of ESP is loaded.

Open/Save

When Save or Save As is selected, the ESP configuration is saved to the host computer’s hard drive and available whenever the same file is selected under Open.

Important: When you save menu changes to your hard drive, these changes are not saved to your reader. The illustration below shows how settings can be saved and received between ESP and the reader, and ESP and the host hard drive.

Import/Export

Import converts the ASCII settings from a text file to ESP configuration settings. Export converts the active ESP configuration settings to an ASCII text file.
Using ESP

Model

In the Model menu you can select any of the models supported by ESP. When you choose a different model, the connection to your present model will be terminated.

<table>
<thead>
<tr>
<th>Model</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M5-2</td>
<td>M5-2-1</td>
</tr>
</tbody>
</table>

To connect to another model, select New Model, choose a new model from the pop-up menu that appears, and click OK.

Note: When you save an ESP file, you are saving the settings of all the models defined in that file.
Menu Toolbar

Options
The Options menu allows you to save memos and set up ESP Preferences.

Note: Preferences will be saved and loaded into ESP whenever ESP is opened next, whether or not you save the ESP file.

Preferences > General Tab

Reload Last File
At startup, reloads the last file saved to the host computer’s hard drive.

Show Model Prompt
At startup, shows the model menu displaying all supported readers.

Show Connect Prompt
At startup, displays the Would you like to connect to the MS-2? prompt.

Receive After Connect
At startup, loads the reader’s settings into ESP. (This is not recommended if you want to preserve your ESP settings for future use.)

Skip EZ Mode
At startup, skips EZ Mode and opens directly in App Mode.
Preferences > Terminal Tab

Show Non-Printable Characters
When Show Non-Printable Characters is enabled, characters such as “CRLF” will be displayed in the Terminal window. When Enhanced Format is checked, the characters are displayed with more detailed formatting.

Change Keyboard Macros
Clicking the Change Keyboard Macros button brings up the Function Keys dialog. In this dialog you can select the desired function key and then enter your macro keystrokes in the associated key map. For example, to make Ctrl-F2 the keystroke to send a trigger character, select F2, then in the Ctrl row, enter <trigger character> and click OK. Then whenever the Ctrl-F2 keystroke is pressed, the trigger character will start the read cycle.

Note: The F1 key is reserved for opening ESP Help and the F3 key is reserved for the Find Next function.

Change Font
Allows you to modify the font used for decode data received from the reader on the Terminal screen.

Change Echo Font
Allows you to modify the font used for command characters typed into the Terminal view.

Enable Echo
Allows you to enter command characters in Terminal.

Display Incoming Data Even When Not in Focus
When Display Incoming Data Even When Not in Focus is enabled, data from the reader will continue to appear in the Terminal even when ESP is not the top window.
Menu Toolbar

Preferences > Bar Code Options Tab

The **Bar Code Options** dialog allows you to set the size of user-created symbols.

Sizing Information
Sets the bar width or module width (in **mils**, or thousandths of an inch) of user-created symbols.

Example: A bar width of 14 is 0.014 inches.

Caption
Allows you to define and position a human-readable caption for the symbol you create.
Using ESP

Preferences > Advanced Tab

Send XON with Autoconnect
Sends an XON (Begin Transmission) command to the reader before starting the Autoconnect routine.

Ask to Save ESP File when Quitting
When enabled, prompts the user to save a .esp file when ending a session.

The .esp file will be saved in the location of your choice.
Menu Toolbar

Preferences > Advanced Tab (cont.)

Connect to Readers via TCP/IP
When enabled, shows a TCP/IP option on the Select Protocol dialog.
Note: This option should only be selected if you intend to connect using an Ethernet adapter.

Use Default Storage Location
When enabled, automatically stores data in ESP’s Application Data folder.
Using ESP

Document Memo

The information you type in the **Document Memo** field will appear in a context-sensitive text box whenever your cursor hovers over the **Document Memo** item on the **Options** menu.

![Document Memo Window]

Model Memo

Similar to **Document Memo**, the information you type in the **Model Memo** field will appear in a context-sensitive text box whenever your cursor hovers over the **Model Memo** item on the **Options** menu. Memos created in **Model Memo** are specific to the model enabled when the message was created.

![Model Memo Window]

Note: Memos must be saved in a .esp file if you want them to available in your next session. If you do not save your current session, any memos that you have entered during the session will be discarded, and will be unavailable in your next session.
Autoconnect

- If your RS-232 connection attempt fails, you can use **Autoconnect** to establish a connection between the reader and the host.

- If your communications port is not the default **COM1**, use the dropdown menu to change your port.

- Once you have chosen the correct port, click **Start** to connect.

When you are connected, you will see the green connection indicator in the status bar at the bottom right of your screen:
Autoconnect (cont.)

If your host settings cannot be changed to match the reader’s settings:

- Click `Connect` on ESP’s menu toolbar, and then select `Connect` on the dropdown menu.
- When the `Connection Settings` dialog appears, check the `Force Connect` box and click `Connect`.

![Connection Settings Dialog](image)
The **View** menu allows you to move quickly between interfaces without using the icon buttons on the **App Mode** toolbar.

Notice that each menu item corresponds with the icon buttons at the top of the ESP window.
Navigating in ESP

To change reader settings, or to access the Terminal or Utilities views, click the App Mode button.

To return to EZ Mode, click the EZ Mode button.

To make changes to configuration settings in the tree controls:

1. **Left-click** on the + to expand menu items.
2. **Double-click** the desired parameter and **single-click** in the selection box to view options.
3. Place your cursor in the selection box, scroll down to the setting you want to change, and **single-click** the setting.

4. **Left-click** again on the open screen to complete the selection.
5. **Right-click** on the open screen and select **Save to Reader** to implement the command in the reader. You can send the command without saving it, or you can send and save the command simultaneously.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>ESP Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read Cycle</td>
<td></td>
</tr>
<tr>
<td>Number of Symbols</td>
<td>Single</td>
</tr>
<tr>
<td>Time Between Identical Decodes</td>
<td>0</td>
</tr>
<tr>
<td>Trigger Mode</td>
<td>Continuous Read</td>
</tr>
<tr>
<td>Serial Trigger</td>
<td></td>
</tr>
<tr>
<td>Character (Delimited)</td>
<td></td>
</tr>
<tr>
<td>Start Character (Non-Delimited)</td>
<td></td>
</tr>
<tr>
<td>Stop Character (Non-Delimited)</td>
<td></td>
</tr>
<tr>
<td>No Decode Timeout</td>
<td>2</td>
</tr>
<tr>
<td>Decodes Before Output</td>
<td>0</td>
</tr>
<tr>
<td>Noread Message</td>
<td>Enabled*</td>
</tr>
<tr>
<td>Message</td>
<td>Disabled</td>
</tr>
<tr>
<td>Reader Setup</td>
<td>Enabled*</td>
</tr>
<tr>
<td>Shutter Speed</td>
<td>0</td>
</tr>
<tr>
<td>Minimum Speed</td>
<td>70</td>
</tr>
<tr>
<td>Maximum Speed</td>
<td>0</td>
</tr>
</tbody>
</table>

The X indicates that the setting is the default.
Send/Receive Options

Send/Receive Options

To access Receive, Save, and Default options, click the Send/Recv button. You can also access these options by right-clicking in any of the configuration views.

Receive

From the Send/Recv menu, select Receive Reader Settings.

Caution: Do not select this option if you do not want to upload the reader’s settings. For example, if your ESP file has a number of custom settings that you want to maintain and download into the reader, these settings would be lost by choosing Yes.

This is useful if you want to receive (upload) the reader’s settings and save them as a file for future use. For example, if your reader has settings that you do not want to change, choosing Yes would allow you to load those settings to ESP and save them in an ESP file for later retrieval.

Receiving the reader’s settings will also assure that you will not be subsequently saving any unwanted changes that you or someone else has made previously in ESP.

Save

Receive Reader Settings

Save to Reader ▶ Send, No Save

Default all ESP Settings Send and Save

Send, No Save (<A>)

Saves ESP settings to current memory.

Send and Save (<Z>)

Activates all changes in current memory and saves to the reader for power-on.
Using ESP

Defaulting
When you select Default Current Menu Settings or Default all ESP Settings, you are only defaulting the ESP settings.

Advanced Options

Send Current View
This is the same as Save to Reader > Send No Save except that only the commands in the current tree control are sent.

Send Current Command
Saves only the command that is currently selected in the tree control.

Add/Remove Exception
After you perform a Receive Reader Settings command and you click on the Advanced Options > Add Exception option, you may see a list of serial commands. These are commands that may be in your reader’s firmware but are not included in (or are different from) your current version of ESP. When exceptions are present, the Exceptions button will appear to the right of the other mode buttons (Communication, Read Cycle, Symbologies). When no exceptions are present, the button will disappear.

You can edit exception commands by double-clicking on them and changing them as needed.

It is important to note that these commands will be saved to your reader whenever you send a Save to Reader command, or an <A> or <Z> command.
Also, if there is a corresponding ESP menu item, the ESP Value column for that item will be blank following a Receive Reader Settings command.

1. From the Send/Recv button, or by right-clicking in any blank section of a tree control.
Send/Receive Options
3 Communications

Contents

Communications by ESP ... 3-2
Communications Serial Commands.. 3-3
Host Port Connections ... 3-4
Host Port Protocol ... 3-5
Preamble .. 3-6
Postamble ... 3-7

This section explains how to set up communications between the reader and a host. With Microscan’s ESP (Easy Setup Program), configuration changes can be made in the ESP tree controls and then sent and saved to the reader. The user can also send serial commands to the reader via ESP’s Terminal.
Communications by ESP

Communications by ESP

Click this button to bring up the App Mode view.

Click this button to bring up the Communication tree control.

To open nested options, **single-click** the +.

To change a setting, **double-click** the setting and use your cursor to scroll through the options.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>ESP Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>Host Port Connections</td>
<td></td>
</tr>
<tr>
<td>Baud Rate</td>
<td></td>
</tr>
<tr>
<td>Parity</td>
<td></td>
</tr>
<tr>
<td>Stop Bits</td>
<td></td>
</tr>
<tr>
<td>Data Bits</td>
<td></td>
</tr>
<tr>
<td>Host Protocol</td>
<td></td>
</tr>
<tr>
<td>Preamble</td>
<td></td>
</tr>
<tr>
<td>Preamble Characters</td>
<td></td>
</tr>
<tr>
<td>Postamble</td>
<td></td>
</tr>
<tr>
<td>Point-to-Point</td>
<td></td>
</tr>
<tr>
<td>Point-to-Point with RTS/CTS</td>
<td></td>
</tr>
</tbody>
</table>
Communications Serial Commands

<table>
<thead>
<tr>
<th>Element</th>
<th>Command Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Port Connections</td>
<td><code><K100, baud rate, parity, stop bits, data bits></code></td>
</tr>
<tr>
<td>Host Port Protocol</td>
<td><code><K140, protocol></code></td>
</tr>
<tr>
<td>Preamble</td>
<td><code><K141, status, preamble character(s)></code></td>
</tr>
<tr>
<td>Postamble</td>
<td><code><K142, status, postamble character(s)></code></td>
</tr>
</tbody>
</table>
Host Port Connections

The following settings define the basic transmission speeds and digital standards that ensure common formatting.

Baud Rate, Host Port

Usage: Can be used to transfer data faster or to match host port settings.

Definition: The rate at which the reader and host transfer data back and forth.

Serial Cmd: `<K100, baud rate, parity, stop bits, data bits>`

Default: 9600

Options: 1 = 1200, 2 = 2400, 3 = 4800, 4 = 9600, 5 = 19.2K, 6 = 38.4K

Parity, Host Port

Usage: Only changed if necessary to match host setting.

Definition: An error detection routine in which one data bit per character is set to 1 or 0 so that the total number of bits in the data field is either even or odd.

Serial Cmd: `<K100, baud rate, parity, stop bits, data bits>`

Default: Even

Options: 0 = None, 1 = Even, 2 = Odd

Stop Bits, Host Port

Usage: Only changed if necessary to match host setting.

Definition: One or two bits added to the end of each character to indicate the end of the character.

Serial Cmd: `<K100, baud rate, parity, stop bits, data bits>`

Default: One

Options: 0 = One, 1 = Two

Data Bits, Host Port

Usage: Only changed if necessary to match host setting.

Definition: One or two bits added to the end of each character to indicate the end of the character.

Serial Cmd: `<K100, baud rate, parity, stop bits, data bits>`

Default: Seven

Options: 0 = Seven, 1 = Eight
Communications

Host Port Protocol

Usage: In general, the point-to-point protocols will work well in most applications. They require no address and must use RS-232 or RS-422 communications standards.

Definition: Protocols define the sequence and format in which information is transferred between the reader and the host.

Serial Cmd: <K140, protocol>

Default: Point-to-Point

Options: 0 = Point-to-Point
1 = Point-to-Point with RTS/CTS

Note: The preamble <K141> and postamble <K142> character strings can be used to frame the decoded data in both protocol modes.

Point-to-Point (Standard)

Usage: Used only with RS-232 or RS-422.

Definition: Standard Point-to-Point requires no address and sends the data to the host whenever it is available, without a request or handshake from the host.

Serial Cmd: <K140, 0>

Point-to-Point with RTS/CTS

Usage: A reader initiates a data transfer with an RTS (request-to-send) transmission. The host, when ready, responds with a CTS (clear-to-send) and the data is transmitted. RTS and CTS signals are transmitted over two dedicated wires as defined in the RS-232 standard. Used only with RS-232.

Definition: Point-to-Point with RTS/CTS (request-to-send/clear-to-send) is a simple hardware handshake protocol that allows a reader to initiate data transfers to the host.

Serial Cmd: <K140, 1>
Preamble

Preamble Status

Usage: Useful for identifying and controlling incoming data. For example, defining the preamble as a carriage return and a line feed causes each decoded message to be displayed on its own line.

Definition: Defines a one to four character data string that can be added to the beginning of the decoded data.

Serial Cmd: `<K141,status,preamble character(s)>`

Default: Disabled

Options: 0 = Disabled 1 = Enabled (within any protocol)

Preamble Characters

Serial Cmd: `<K141,status,preamble character(s)>`

Default: ^M (carriage return)

Options: To enter control characters within a serial command, hold down the Ctrl key while typing the desired character.

Example: `<K141,1,CTRL-m>` to enter the control character ^M.
Communications

Postamble

Postamble Status

Usage: Useful for identifying and controlling incoming data. For example, defining the postamble as a carriage return and a line feed causes each decoded message to be displayed on its own line.

Definition: Allows the user to enable or disable up to four postamble characters that can be added to the end of the decoded data.

Serial Cmd: `<K142,status,postamble character(s)>`

Default: Enabled

Options: 0 = Disabled 1 = Enabled (within any protocol)

Postamble Characters

Serial Cmd: `<K142,status,postamble character(s)>`

Default: ^M^J (carriage return/line feed)

Options: To enter control characters within a serial command, hold down the Ctrl key while typing the desired character.

Example: `<K142,1,CTRL-m CTRL-j>` to enter ^M^J.
Postamble
Contents

Read Cycle by ESP ... 4-2
Read Cycle Serial Commands ... 4-3
MS-2 Read Cycle Overview ... 4-4
Number of Symbols ... 4-5
Time Between Identical Decodes .. 4-6
Trigger Mode ... 4-7
Continuous Read 1 Output Emulation 4-9
Serial Trigger Character (Delimited) ... 4-10
Start Trigger Character (Non-Delimited) 4-11
Stop Trigger Character (Non-Delimited) 4-12
No Decode Timeout ... 4-13
Decodes Before Output ... 4-14
No Read Message ... 4-15
Reader Setup ... 4-16

After you’ve established communications you will need to address the spatial and timing parameters associated with your application. This section explains those parameters.
Read Cycle by ESP

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ESP Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read Cycle</td>
<td></td>
</tr>
<tr>
<td>Number of Symbols</td>
<td>Single</td>
</tr>
<tr>
<td>Time Between Identical Decodes</td>
<td>0</td>
</tr>
<tr>
<td>Trigger Mode</td>
<td>Continuous Read</td>
</tr>
<tr>
<td>Serial Trigger</td>
<td></td>
</tr>
<tr>
<td>Character (Delimited)</td>
<td>G5</td>
</tr>
<tr>
<td>Start Character (Non-Delimited)</td>
<td>0x00 NUL</td>
</tr>
<tr>
<td>Stop Character (Non-Delimited)</td>
<td>0x00 NUL</td>
</tr>
<tr>
<td>No Decode Timeout</td>
<td>2</td>
</tr>
<tr>
<td>Decodes Before Output</td>
<td>0</td>
</tr>
<tr>
<td>No Read Message</td>
<td>Enabled*</td>
</tr>
<tr>
<td>Message</td>
<td>Disabled</td>
</tr>
<tr>
<td>Reader Setup</td>
<td>Enabled*</td>
</tr>
<tr>
<td>Shutter Speed</td>
<td>0</td>
</tr>
<tr>
<td>Minimum Speed</td>
<td>70</td>
</tr>
<tr>
<td>Maximum Speed</td>
<td>0</td>
</tr>
</tbody>
</table>

To open nested options, single-click the +.

To change a setting, double-click the setting and use your cursor to scroll through the options.
Read Cycle Serial Commands

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger Mode</td>
<td>K200, trigger mode</td>
</tr>
<tr>
<td>Serial Trigger Character</td>
<td>K201, serial trigger character</td>
</tr>
<tr>
<td>No Decode Timeout</td>
<td>K220, 0, seconds</td>
</tr>
<tr>
<td>Decodes Before Output</td>
<td>K221, decodes before output</td>
</tr>
<tr>
<td>Number of Symbols</td>
<td>K222, number of symbols</td>
</tr>
<tr>
<td>Start Trigger Character</td>
<td>K229, start character</td>
</tr>
<tr>
<td>Stop Trigger Character</td>
<td>K230, stop character</td>
</tr>
<tr>
<td>Time Between Identical Decodes</td>
<td>K503, time between identical decodes</td>
</tr>
<tr>
<td>Reader Setup</td>
<td>K522, shutter speed, minimum speed, maximum speed</td>
</tr>
<tr>
<td>No Read Message</td>
<td>K714, status, No Read message</td>
</tr>
</tbody>
</table>
MS-2 Read Cycle Overview

The MS-2 outputs symbol data as soon as it is decoded. There is no “End of Read Cycle” option. **Multiple** symbol operations are emulated by controlling the read cycle duration and the time allowed between identical consecutive decodes.

The following conditions also apply:

1. In **Single** symbol mode, a read cycle ends only on a decode, falling trigger, or timeout.
2. In **Multiple** symbol mode, the read cycle begins on a triggered event, but starts over after any symbol has been decoded.
3. There is no “new trigger” feature.
4. There is no timeout for **External Level** mode.
5. There is no **Continuous Read 1 Output** setting in **Trigger Mode**, but this setting can be emulated by following the steps described in **Continuous Read 1 Output Emulation**.
Read Cycle

Number of Symbols

Usage: Commonly used in shipping applications where an object contains individual symbols for part number, quantity, and other values.

Definition: This feature allows one trigger event to decode all symbols present.

Conditions:

- When **Number of Symbols** is set to **Single**, the read cycle ends when one symbol is decoded and output.
- When **Number of Symbols** is set to **Multiple**, all decoded symbol data (for both the same and different symbols) is output while the read cycle is active and/or no timeout has occurred.
- If set to **Multiple** and **Time Between Identical Decodes** is less than the decode time (typically about 4ms), the same symbol data can be output multiple times.

Number of Symbols

Definition: **Number of Symbols** is the number of different symbols that can be read in a single read cycle.

Serial Cmd: `<K222,number of symbols>`

Default: 1

Options:

- 0 = Multiple
- 1 = Single
Time Between Identical Decodes

Time Between Identical Decodes

Usage: Can be used to prevent repetition of data output. Also useful for emulating **Multiple** symbol operations. When used in conjunction with **Number of Symbols** set to **Multiple**, **Time Between Identical Decodes** can be set so that more than one symbol can be read within a read cycle.

Definition: Determines the length of time that the reader will wait before it outputs the same symbol’s data a second time.

Serial Cmd: `<K503, time between identical decodes>`

Default: 0

Options: 0 to 2550ms
Trigger Mode

Definition: The Trigger is the event that initiates a read cycle.
Serial Cmd: \texttt{<K200,trigger mode>}
Default: Continuous Read
Options:
- 0 = Continuous Read
- 2 = External Level
- 3 = External Edge
- 4 = Serial Data
- 5 = Serial Data and Edge

Continuous Read

Usage: Continuous Read is useful in testing symbol readability or reader functions. It is not recommended for normal operations.

Definition: In Continuous Read, trigger input options are disabled and the reader is always in the read cycle. If a single symbol stays within read range for multiple read cycles, its data will be transmitted repeatedly until it leaves the read range.

The reader sends replies to serial commands that require responses when symbol data is transmitted.

Note: No Read options have no affect on Continuous Read.

Serial Cmd: \texttt{<K200,0>}

External Level

Definition: External Level allows the read cycle (active state) to begin when a trigger (change of state) from an external sensing device is received. The read cycle persists until the object moves out of the sensor range and the active trigger state changes again.

Serial Cmd: \texttt{<K200,2>}
Trigger Mode

External Edge

Usage: This mode is highly recommended in any application where conveying speed is constant, or if spacing, object size, or read cycle timeouts are consistent.

Definition: **External Edge**, as with Level, allows the read cycle (active state) to begin when a trigger (change of state) from an external sensing device is received. However, the passing of an object out of sensor range does not end the read cycle. The read cycle ends with a good read output, or, depending on the **End of Read Cycle** setting, a timeout or new trigger occurs.

Serial Cmd: `<K200,3>`

Serial Data

Usage: **Serial Data** is effective in a highly controlled environment where the host knows precisely when the object is in the field of view. It is also useful in determining if a No Read has occurred.

Definition: In **Serial Data**, the reader accepts an ASCII character from the host or controlling device as a trigger to start a read cycle. A **Serial Data** trigger behaves the same as an **External Edge** trigger.

Serial commands are entered inside angle brackets, as shown here: `<t>`.

Serial Cmd: `<K200,4>

Note: In **Serial Data**, sending a non-delimited start serial character will start a read cycle; however, a non-delimited stop serial character has no effect.

Serial Data and Edge

Usage: **Serial Data and Edge** is seldom used but can be useful in an application that primarily uses an external sensing device but occasionally needs to be triggered manually.

An auxiliary terminal can be connected to the auxiliary port so the user can send the serial trigger character through the reader to the host.

Definition: In this mode the reader accepts either a serial ASCII character or an external trigger pulse to start the read cycle.

Serial Cmd: `<K200,5>

Note: In **Serial Data**, sending a non-delimited start serial character will start a read cycle; however, a non-delimited stop serial character has no effect.
Continuous Read 1 Output Emulation

Usage: Continuous Read 1 Output can be useful in applications where it is not feasible to use a trigger and all succeeding symbols contain different information. It is also effective in applications where the objects are presented by hand. The MS-2 does not offer this feature, but it can be emulated by following the steps described below.

Definition: In Continuous Read 1 Output Emulation, the trigger must be active (grounded) for as long as the MS-2 needs to be scanning symbols. The MS-2 will only output symbol data once while that symbol remains in the MS-2’s field of view. If the symbol is removed and then presented again, it must be removed from the field of view for the amount of time specified in the Time Between Identical Decodes value before the MS-2 will decode the symbol again. However, if a new symbol is presented, the MS-2 will decode it and output symbol data immediately.

Setting Up Continuous Read 1 Output Emulation

1. Set Number of Symbols to Multiple.

2. Set Time Between Identical Decodes to 500 (ms).

3. Set Trigger Mode to External Level.

Important: Continuous Read 1 Output Emulation is not recommended for automated environments, because there is typically no reliable way to verify whether or not a symbol was missed.
Serial Trigger Character (Delimited)

Usage: Allows the user to define the trigger character and delimiters that start and stop the read cycle.

Definition: A serial trigger is considered an online host command and requires the same command format as all host commands. It must be entered within angle bracket delimiters < > or, in the case of non-delimited triggers, it must define individual start and stop characters.

Serial Cmd: `<K201, serial trigger character>`

Default: `^]` (<GS>)

Options: Any single ASCII character, including control characters, except NUL (00 in hex), an existing host command character, or an on-line protocol character. Control characters entered on the command line are displayed in the menu as mnemonic characters.

Note: Serial Data or Serial Data and Edge triggering mode must be enabled for Serial Trigger Character to take effect.
Start Trigger Character (Non-Delimited)

Usage: Useful in applications where different characters are required to start a read cycle.

Definition: A single ASCII host serial trigger character that starts the read cycle and is not enclosed by delimiters such as `<` and `>`. Non-delimited Start characters can be defined and will function according to the trigger event.

When defining Start trigger characters, the following rules apply:

- In External Edge the reader looks only for the Start trigger character and ignores any Stop trigger character that may be defined.
- In External Level the Start trigger character begins the read cycle and the Stop trigger character ends it. Note that even after a symbol has been decoded and the symbol data transmitted, the reader remains in External Level trigger read cycle until a Stop character is received.
- In Serial Data and Edge trigger mode, either a Start trigger character or a hardware trigger can start an edge trigger read cycle.

Serial Cmd: `<K229,start trigger character>`

Default: NUL (00 in hex) (disabled)

Options: Two hex digits representing any ASCII character except XON and XOFF.
Stop Trigger Character (Non-Delimited)

Stop Trigger Character (Non-Delimited)

Usage: Useful in applications where different characters are required to end a read cycle.

Definition: A single ASCII host serial trigger character that ends the read cycle and is not enclosed by delimiters such as < and >.
Non-delimited Stop characters can be defined and will function according to the trigger event.

When defining Stop trigger characters, the following rules apply:

• In External Edge the reader looks only for the Start trigger character and ignores any Stop trigger character that may be defined.

• In External Level the Start trigger character begins the read cycle and the Stop trigger character ends it. Note that even after a symbol has been decoded and the symbol data transmitted, the reader remains in External Level trigger read cycle until a Stop character is received.

• In Serial Data and Edge trigger mode, either a Start trigger character or a hardware trigger can start an edge trigger read cycle.

Serial Cmd: <K230, stop trigger character>
Default: NUL (00 in hex) (disabled)
Options: Two hex digits representing any ASCII character except XON and XOFF.
No Decode Timeout

Usage: Useful in tightly-controlled applications that require a read cycle to end before the next object appears.

Definition: The duration of the read cycle as measured from either the beginning of the read cycle or from the last decode.

Serial Cmd: `<K220,0,seconds>`

Note: The first parameter is always a zero (0) and does not change.

Default: 2

Options: 1 - 4095

The MS-2 times out if no symbol is decoded during the **No Decode Timeout** period. If a symbol is decoded before the timeout expires, the timeout period starts again.

No Decode Timeout only applies to Edge, Serial Data, and Serial Data and Edge trigger modes.

In **Single** symbol mode (`<K222,1>`), **No Decode Timeout** is the maximum amount of time the reader will attempt to decode after a trigger is activated.

In **Multiple** symbol mode (`<K222,0>`), **No Decode Timeout** is the time in which there are no decodes—not the time since the trigger was activated. That is, if the reader continues to decode symbols presented to it, it will not exit the read cycle unless the time between decodes exceeds the time set in **No Decode Timeout**.

For **Level** trigger mode, the read cycle ends when the trigger falls, or when a symbol is decoded and output in **Single** symbol mode.
Decodes Before Output

Decodes Before Output

Note: When setting up, determine if the reader’s scan rate is capable of scanning your longest symbol the required number of times.

Usage: Useful for increasing the reliability of decodes for symbologies that do not have internal error checking.

Definition: The number of decodes required per symbol before its data is sent. Requires the reader to decode a symbol successfully a designated number of times before data is output.

Serial Cmd: `<K221,decodes before output>`

Default: 0

Options: 0 to 10 (0 = “Auto-adaptive”)

Note: If the reader is in Single symbol mode and it doesn’t achieve the number of required decodes during the read cycle, a No Read message will be output.

Note: Higher Decodes Before Output settings will decrease the throughput rate.

No Read Message

Note: A No Read message can only be transmitted when in Single symbol mode and no decodes occur.

Usage: Used in applications where the host needs serial verification that a symbol has not been read.

Definition: When enabled, and if no symbol has been decoded before timeout or the end of the read cycle, the No Read message will be transmitted to the host.

No Read Status

Serial Cmd: <K714,status,No Read message>
Default: Enabled
Options: 0 = Disabled 1 = Enabled

No Read Message

Definition: Any combination of ASCII characters can be defined as the No Read message.

Serial Cmd: <K714,status,No Read message>
Default: No Read
Options: 1 to 20 ASCII characters.

Note: A No Read message is not output when the reader is disabled (when an <I> command has been sent).
Reader Setup

Reader Setup

Reader Setup allows shutter speed to be controlled automatically, set to a specific value, or defined within a fixed range.

Shutter Speed

Important: Shutter Speed settings should not be changed unless they are being increased to accommodate a fast line speed in a dynamic application.

Usage: Faster shutter speeds may be necessary in faster-moving applications. Slower shutter speeds are useful in slower, lower-contrast applications.

Definition: Shutter speed is the amount of time that the sensor is exposed to light.

Serial Cmd: <K522,shutter speed,minimum speed,maximum speed>

Default: 0 (Automatic)

Options: 70 to 65535

Minimum Speed

Usage: Useful in applications with variable speeds, variable symbol sizes, and variable distances.

Definition: The slowest shutter speed and longest amount of time that the sensor is exposed to light.

Serial Cmd: <K522,shutter speed,minimum speed,maximum speed>

Default: 70

Options: 70 to 65535

Maximum Speed

Usage: Useful in applications with variable speeds, symbol sizes, and distances.

Definition: The fastest shutter speed and shortest amount of time that the sensor is exposed to light.

Serial Cmd: <K522,shutter speed,minimum speed,maximum speed>

Default: 65535

Options: 70 to 65535
5 Symbologies

Contents

Symbologies by ESP ... 5-2
Symbologies Serial Commands ... 5-3
Code 39 .. 5-4
Codabar .. 5-6
Interleaved 2 of 5 ... 5-8
Code 128/EAN-128 ... 5-10
Code 93 .. 5-11
GS1 DataBar (RSS) ... 5-12
MSI Code .. 5-13
Plessey Code ... 5-14
Industrial 2 of 5 ... 5-15
UPC/EAN .. 5-17
Symbology Identifier .. 5-20

This section describes the various symbol types that can be decoded by the MS-2 CCD Reader.

See the following sites for additional symbology information:
http://www.aimglobal.org/standards/aimpubs.asp
Symbologies by ESP

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>ESP Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbologies</td>
<td></td>
</tr>
<tr>
<td>Code 39</td>
<td></td>
</tr>
<tr>
<td>Code 128/EAN</td>
<td></td>
</tr>
<tr>
<td>Interleaved 2 of 5</td>
<td></td>
</tr>
<tr>
<td>Codabar</td>
<td></td>
</tr>
<tr>
<td>UPC/EAN</td>
<td></td>
</tr>
<tr>
<td>Code 93</td>
<td></td>
</tr>
<tr>
<td>Industrial 2 of 5</td>
<td></td>
</tr>
<tr>
<td>MSI Code</td>
<td></td>
</tr>
<tr>
<td>Flexor Code</td>
<td></td>
</tr>
<tr>
<td>DataBar Expanded</td>
<td>Disabled*</td>
</tr>
<tr>
<td>DataBar Limited</td>
<td>Disabled*</td>
</tr>
<tr>
<td>DataBar-14</td>
<td>Enabled</td>
</tr>
<tr>
<td>Symbology Identifier</td>
<td></td>
</tr>
</tbody>
</table>

To change a setting, **double-click** the setting and use your cursor to scroll through the options.

Click this button to bring up the **App Mode** view.

Click this button to bring up the **Symbologies** tree control.

To open nested options, **single-click** the +.
Symbologies Serial Commands

<table>
<thead>
<tr>
<th>Symbology Identifier</th>
<th>Serial Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code 39</td>
<td><code><K470, status, check character status, check character output status, 0,0, minimum symbol length, full ASCII set></code></td>
</tr>
<tr>
<td>Codabar</td>
<td><code><K471, status, 0, start/stop match output status, 0, symbol length status, symbol length, check character status, check character output status></code></td>
</tr>
<tr>
<td>Interleaved 2 of 5</td>
<td><code><K472, status, check character status, check character output status, symbol length #1, symbol length #2></code></td>
</tr>
<tr>
<td>Code 128/EAN 128</td>
<td><code><K474, status, 0, minimum symbol length, 1, 1, 0, application record separator character></code></td>
</tr>
<tr>
<td>Code 93</td>
<td><code><K475, status, 0, minimum symbol length></code></td>
</tr>
<tr>
<td>DataBar-14 (RSS-14)</td>
<td><code><K482, status></code></td>
</tr>
<tr>
<td>DataBar Limited (RSS Limited)</td>
<td><code><K483, status></code></td>
</tr>
<tr>
<td>DataBar Expanded (RSS Expanded)</td>
<td><code><K484, status></code></td>
</tr>
<tr>
<td>MSI Code</td>
<td><code><K486, status, check character mode, check character output status, 0, minimum symbol length></code></td>
</tr>
<tr>
<td>Plessey Code</td>
<td><code><K487, status, check character output status, 0, minimum symbol length></code></td>
</tr>
<tr>
<td>Industrial 2 of 5</td>
<td><code><K488, status, check character status, check character output status, format, symbol length #1, symbol length #2></code></td>
</tr>
<tr>
<td>UPC/EAN</td>
<td><code><K489, UPC-A status, UPC-E status, EAN-8 status, EAN-13 status, supplementals required, supplemental 2 status, supplemental 5 status, UPC-A as EAN-13, UPC-E as UPC-A, EAN-8 as EAN-13></code></td>
</tr>
</tbody>
</table>
Code 39

Usage: Code 39 is the most widely used non-retail 1D symbology.

Definition: An alphanumeric symbology with unique start/stop code patterns, composed of 9 black and white elements per character, 3 of which are wide.

Serial Cmd: `<K470,status,check character status,check character output status,0,0,minimum symbol length,full ASCII set>`

Default: Enabled

Options:
- 0 = Disabled
- 1 = Enabled

Check Character Status (Code 39)

Definition: When enabled, the reader will verify a Modulus 10 check character in order to identify the decode as successful.

Serial Cmd: `<K470,status,check character status,check character output status,0,0,minimum symbol length,full ASCII set>`

Default: Disabled

Options:
- 0 = Disabled
- 1 = Enabled

Check Character Output Status (Code 39)

Usage: Check Character Output Status, when added to the symbol, provides additional data security.

Definition: When enabled, the check character is read and output along with the symbol data. When disabled, symbol data is output without the check character.

Note: With Check Character Output Status and an External or Serial trigger option enabled, an invalid check character calculation will cause a No Read message to be transmitted at the end of the read cycle.

Serial Cmd: `<K470,status,check character status,check character output status,0,0,minimum symbol length,full ASCII set>`

Default: Disabled

Options:
- 0 = Disabled
- 1 = Enabled
Minimum Symbol Length (Code 39)

Usage: Minimum Symbol Length helps prevent truncations and increases data integrity by ensuring that only one symbol length will be accepted.

Definition: Specifies the exact number of characters that the reader will recognize (this does not include start and stop characters and check characters). The reader ignores any symbology that is less than the specified length.

Serial Cmd: `<K470,status,check character status,check character output status,0,0,minimum symbol length,full ASCII set>`

Default: 0
Options: 0 to 32

Full ASCII Set (Code 39)

Usage: Must be enabled when reading characters outside the standard character set (0-9, A-Z, etc.)

The user must know in advance whether or not to use the Full ASCII Set option. Since Full ASCII Set requires two code words to encode one character, it is less efficient.

Definition: Standard Code 39 encodes 43 characters; zero through nine, capital “A” through capital “Z”, minus symbol, plus symbol, forward slash, space, decimal point, dollar sign, and percent symbol. When Full ASCII Set is enabled, the reader can read the full ASCII character set, from 0 to 255.

Serial Cmd: `<K470,status,check character status,check character output status,0,0,minimum symbol length,full ASCII set>`

Default: Disabled
Options: 0 = Disabled 1 = Enabled
Codabar

Usage: Used in photo-finishing and library applications. Previously used in medical applications, but not typically used in newer medical applications.

Definition: Codabar is a 16-bit character set (0 through 9, and the characters $, ., /, +, and –) with start/stop codes and at least two distinctly different bar widths.

Serial Cmd: `<K471,status,0,start/stop output status,0,symbol length status,symbol length,check character status,check character output>

Default: Disabled
Options: 0 = Disabled 1 = Enabled

Start/Stop Output Status (Codabar)

Definition: When enabled, the start and stop characters will be present in the data output of the decoded symbol. When disabled, the start and stop characters will not be present in the data output of the decoded symbol.

Note: Because the start and stop characters are included as part of the data, the characters must be included as part of the length in a fixed length mode of operation.

Serial Cmd: `<K471,status,0,start/stop output status,0,symbol length status,symbol length,check character status,check character output>

Default: Enabled
Options: 0 = Disabled 1 = Enabled

Symbol Length Status (Codabar)

Definition: When set to Any/Minimum, any symbol length is considered valid. When set to Fixed, the reader will check the symbol length against the Symbol Length Status parameter.

Serial Cmd: `<K471,status,0,start/stop output status,0,symbol length status,symbol length,check character status,check character output>

Default: Any/Minimum
Options: 0 = Any/Minimum 1 = Fixed
Symbologies

Symbol Length (Codabar)

Definition: Specifies the number of characters that the reader will recognize, including start and stop check characters. The

Note: When setting **Symbol Length** to any value other than 0, add 2 to account for reserved spaces. For example, if your symbol has 3 characters, set Symbol Length to 5.

Note: If Symbol Length is set to 0 and Symbol Length Status is set to Any/Minimum, all symbol lengths are decoded.

Serial Cmd: `<K471, status, 0, start/stop output status, 0, symbol length status, symbol length, check character status, check character output>`

Default: 6

Options: 0 to 32

Check Character Status (Codabar)

Definition: When disabled, the reader will not perform any character checking calculations on decoded Codabar symbols. When set to **Modulus 16**, the reader will perform a Modulus 16 check character calculation on the symbol. If the symbol does not pass this calculation, it will not be decoded.

Serial Cmd: `<K471, status, 0, start/stop output status, 0, symbol length status, symbol length, check character status, check character output>`

Default: Disabled

Options: 0 = Disabled
1 = Enabled (Modulus 16)

Check Character Output (Codabar)

Definition: When this field is disabled and a check character calculation is enabled, the reader will strip the verified check character from the symbol data output. This condition must be accounted for if a minimum length is also being used. When enabled, the reader will output the check character as part of the symbol data. This condition must be accounted for if a minimum length is also being used.

Serial Cmd: `<K471, status, 0, start/stop output status, 0, symbol length status, symbol length, check character status, check character output>`

Default: Disabled

Options: 0 = Disabled
1 = Enabled
Interleaved 2 of 5

Usage: Interleaved 2 of 5 has been popular because it is the most dense symbology for printing numeric characters less than 10 characters in length; however, Microscan does not recommend this symbology for any new applications because of inherent problems such as truncation.

Definition: A dense, continuous, self-checking, numeric symbology. Characters are paired together so that each character has five elements, two wide and three narrow, representing numbers 0 through 9, with the bars representing the first character and the interleaved spaces representing the second character. (A check character is highly recommended).

Serial Cmd: `<K472,status,check character status,check character output status,symbol length #1,symbol length #2>`

Default: Disabled
Options: 0 = Disabled 1 = Enabled

Check Character Status (Interleaved 2 of 5)

Usage: This option is not typically used, but it can be enabled for additional security in applications where the host requires redundant check character verification.

Definition: An error correcting routine in which the check character is added.

Serial Cmd: `<K472,status,check character status,check character output status,symbol length #1,symbol length #2>`

Default: Disabled
Options: 0 = Disabled 1 = Enabled

Check Character Output Status (Interleaved 2 of 5)

Definition: When enabled, a check character is sent along with the symbol data for added data security.

Serial Cmd: `<K472,status,check character status,check character output status,symbol length #1,symbol length #2>`

Default: Disabled
Options: 0 = Disabled 1 = Enabled
Symbologies

Symbol Length #1 (Interleaved 2 of 5)

Usage: Useful in applications where I 2/5 symbols of a specific length are required.

Definition: The Symbol Length # 1 field is one of two fields against which the decoded symbol is compared before accepting it as valid or rejecting it.

Serial Cmd: \(<K472,\text{status,check character status,check character output,}\text{symbol length }\#1,\text{symbol length }\#2>\)

Default: 10
Options: 0 to 32

Symbol Length #2 (Interleaved 2 of 5)

Usage: Useful in applications where I 2/5 symbols of a specific length are required.

Definition: The Symbol Length # 2 field is one of two fields against which the decoded symbol is compared before accepting it as valid or rejecting it.

Serial Cmd: \(<K472,\text{status,check character status,check character output,}\text{symbol length }\#1,\text{symbol length }\#2>\)

Default: 6
Options: 0 to 32

Range Modes (Interleaved 2 of 5)

Variable Length
To set for any length, Symbol Length # 1 and Symbol Length # 2 must both equal zero.

Minimum Length
To set for minimum length, both Symbol Length # 1 and Symbol Length # 2 must be equal to each other and be any number other than zero.

Fixed Length
To set for a fixed length, Symbol Length #1 and Symbol Length #2 must not be equal to each other.
Code 128/EAN 128

Usage: Code 128 is a smaller symbology useful in applications with limited space and high-security requirements.

Definition: A very dense alphanumeric symbology. It encodes all 128 ASCII characters, it is continuous, has variable length, and uses multiple element widths measured edge to edge.

Serial Cmd: `<K474,status,0,minimum symbol length,1,1,0,application record separator character>`

Default: Disabled

Options:
- 0 = Disabled
- 1 = Enabled

Minimum Symbol Length (Code 128/EAN 128)

Usage: Minimum Symbol Length helps prevent truncations and increases data integrity by ensuring that only one symbol length will be accepted.

Definition: This specifies the exact number of characters that the reader will recognize (this does not include start, stop, and check characters). The reader ignores any symbol not having the specified length.

Serial Cmd: `<K474,status,0,minimum symbol length,1,1,0,application record separator character>`

Default: 0

Options: 0 to 32

Application Record Separator Character (Code 128/EAN 128)

Definition: This is an ASCII character that serves as a separator in formatted output.

Serial Cmd: `<K474,status,0,minimum symbol length,1,1,0,application record separator character>`

Default: NUL

Options: Any ASCII character (7 bit)
Symbologies

Code 93

Usage: Used in some clinical applications.

Definition: Code 93 is a variable-length, continuous symbology employing four element widths. Each Code 93 character has nine modules that may be either black or white. Each character contains three bars and three spaces.

Serial Cmd: `<K475,status,0,minimum symbol length>`

Default: Disabled

Options: 0 = Disabled 1 = Enabled

Minimum Symbol Length (Code 93)

Definition: Specifies the minimum number of characters that the reader will recognize, not including the start and stop check characters. The reader ignores any symbol smaller than the specified length.

Note: When setting *Minimum Symbol Length* to any value other than 0, add 1 to account for a reserved space. For example, if your symbol has 3 characters, set Symbol Length to 4.

Serial Cmd: `<K475,status,0,minimum symbol length>`

Default: 10

Options: 0 to 32
GS1 DataBar (RSS)

GS1 DataBar (RSS)

Note: GS1 DataBar symbologies were previously known as “Reduced Space Symbology”, or “RSS”.

DataBar-14 (RSS-14)

Note: DataBar-14 was previously known as “RSS-14”.

Usage: Used in the grocery, retail, and prescription drug industries where 14-digit EAN item identification may be needed.

Definition: DataBar-14 is a minimum length symbology that encodes 14 digits, including a 1-digit indicator. DataBar-14 is 96 modules wide. It can be stacked in two rows, it can read omnidirectionally if printed in full height, or horizontally if height-truncated for small marking.

Serial Cmd: `<K482,status>`
Default: Disabled
Options: 0 = Disabled
1 = Enabled

DataBar Limited (RSS Limited)

Note: DataBar Limited was previously known as “RSS Limited”.

Usage: DataBar Limited is designed to be read by laser and CCD readers. It is not recommended for omnidirectional slot scanners.

Definition: Encodes a smaller 14-digit symbol (74 modules wide) that is not omnidirectional.

Serial Cmd: `<K483,status>`
Default: Disabled
Options: 0 = Disabled
1 = Enabled

DataBar Expanded (RSS Expanded)

Note: DataBar Expanded was previously known as “RSS Expanded”.

Usage: Used to encode primary and supplementary data in retail point-of-sale and other applications.

Definition: DataBar Expanded is a variable length symbology that can encode supplementary information in addition to the 14-digit EAN item identification number and is capable of encoding up to 74 numeric or 41 alphabetic characters.

Serial Cmd: `<K484,status>`
Default: Disabled
Options: 0 = Disabled
1 = Enabled
MSI Code

Status (MSI Code)

Usage: Used for inventory control and the identification of storage containers and locations in warehouse environments.

Definition: **MSI Code** is a numeric, continuous symbology in which each character consists of four bits in a binary format.

Serial Cmd: `<K486,status,check character mode,check character output status,0,minimum symbol length>`

Default: Disabled
Options: 0 = Disabled 1 = Enabled

Check Character Mode (MSI Code)

Definition: This field is set to perform a Modulus 10 calculation by default. It can also be set to perform a Double Modulus 10 calculation.

Serial Cmd: `<K486,status,check character mode,check character output status,0,minimum symbol length>`

Default: Modulus 10
Options: 1 = Modulus 10 2 = Double Modulus 10

Check Character Output Status (MSI Code)

Definition: When this field is enabled, the reader will output the check digit with symbol data. When disabled, the reader will not output the check digit with symbol data.

Serial Cmd: `<K486,status,check character mode,check character output status,0,minimum symbol length>`

Default: Disabled
Options: 0 = Disabled 1 = Enabled

Minimum Symbol Length (MSI Code)

Definition: This field specifies the minimum number of characters the reader will recognize, including a check character.

Serial Cmd: `<K486,status,check character mode,check character output status,0,minimum symbol length>`

Default: 6
Options: 0 to 32
Plessey Code

Plessey Code

Status (Plessey Code)

Usage: Used primarily in library and retail applications.
Definition: Plessey Code consists of pairs of wide and narrow bars representing binary data which, taken in units of 12, define hexadecimal characters.
Serial Cmd: `<K487,status,check character output status,0,minimum symbol length>
Default: Disabled
Options: 0 = Disabled 1 = Enabled

Check Character Output Status (Plessey Code)

Definition: When this field is enabled, the check character will be output with symbol data. When disabled, the check character will not be output with symbol data.
Serial Cmd: `<K487,status,check character output status,0,minimum symbol length>
Default: Disabled
Options: 0 = Disabled 1 = Enabled

Minimum Symbol Length (Plessey Code)

Definition: This field specifies the minimum number of characters the reader will recognize, including a check character.
Serial Cmd: `<K487,status,check character output status,0,minimum symbol length>
Default: 0
Options: 0 to 32
Industrial 2 of 5

Status (Industrial 2 of 5)

Usage: Used primarily in warehouse sortation, photo finishing, and the sequential numbering of airline tickets.

Definition: Microscan recommends that Industrial 2 of 5 always be used with fixed symbol length settings in any application. Symbol Length # 1 and Symbol Length # 2 can both be set to 0 to allow the reader to decode Industrial 2 of 5 symbols of varying lengths.

Serial Cmd: `<K488, status, check character status, check character output status, format, symbol length #1, symbol length #2>`

Default: Disabled
Options:
- 0 = Disabled
- 1 = Enabled

Check Character Status (Industrial 2 of 5)

Definition: When this field is enabled, a check character is added.

Serial Cmd: `<K488, status, check character status, check character output status, format, symbol length #1, symbol length #2>`

Default: Disabled
Options:
- 0 = Disabled
- 1 = Enabled

Check Character Output Status (Industrial 2 of 5)

Definition: When this field is enabled, the check character will be output with symbol data. When disabled, the check character will not be output with symbol data.

Serial Cmd: `<K488, status, check character status, check character output status, format, symbol length #1, symbol length #2>`

Default: Disabled
Options:
- 0 = Disabled
- 1 = Enabled

Format (Industrial 2 of 5)

Definition: Defines the number of start and stop check characters.

Serial Cmd: `<K488, status, check character status, check character output status, format, symbol length #1, symbol length #2>`

Default: 3 start / 3 stop
Options:
- 0 = 3 start / 3 stop
- 1 = 2 start / 2 stop
Symbol Length # 1 (Industrial 2 of 5)

Definition: This field specifies the number of characters that the reader will recognize, including start and stop characters and check characters. The reader ignores any symbol with fewer than the specified number of characters. Because Industrial 2 of 5 is a continuous symbology, it is prone to substitution errors. Therefore, a symbol length must be defined and a symbol must contain an even number of characters.

Serial Cmd: `<K488,status,check character status,check character output status,format,symbol length #1,symbol length #2>`

Default: 10

Options: 0 to 32

Symbol Length # 2 (Industrial 2 of 5)

Definition: This field specifies the number of characters that the reader will recognize, including start and stop characters and check characters. The reader ignores any symbol with fewer than the specified number of characters. Because Industrial 2 of 5 is a continuous symbology, it is prone to substitution errors. Therefore, a symbol length must be defined and a symbol must contain an even number of characters.

Serial Cmd: `<K488,status,check character status,check character output status,format,symbol length #1,symbol length #2>`

Default: 6

Options: 0 to 32

Range Modes (Industrial 2 of 5)

Variable Length
To set for any length, Symbol Length # 1 and Symbol Length # 2 must both equal zero.

Minimum Length
To set for minimum length, both Symbol Length # 1 and Symbol Length # 2 must be equal to each other and be any number other than zero.

Fixed Length
To set for a fixed length, Symbol Length #1 and Symbol Length #2 must not be equal to each other.
Symbologies

UPC/EAN

UPC-A Status (UPC/EAN)

Usage: Used primarily in point-of-sale applications in the retail industry.

Definition: UPC (Universal Product Code) is a minimum length, numeric, continuous symbology. UPC can have two- or five-digit supplemental bar code data following the normal code. The UPC Version A (UPC-A) symbol is used to encode a 12-digit number. The first digit is the number system character, the next five are the manufacturer number, the next five are the product number, and the last digit is the checksum character.

EAN is the European version of the UPC symbology and is used in European market applications.

When enabled, the reader will read UPC-A symbols.

Serial Cmd: `<K489,UPC-A status,UPC-E status,EAN-8 status,EAN-13 status,supplementals required,supplemental 2 status,supplemental 5 status,UPC-A as EAN-13,UPC-E as UPC-A,EAN-8 as EAN-13>`

Default: Enabled

Options: 0 = Disabled 1 = Enabled

UPC-E Status (UPC/EAN)

Definition: This field is enabled by default and will decode all UPC-E symbols.

Serial Cmd: `<K489,UPC-A status,UPC-E status,EAN-8 status,EAN-13 status,supplementals required,supplemental 2 status,supplemental 5 status,UPC-A as EAN-13,UPC-E as UPC-A,EAN-8 as EAN-13>`

Default: Enabled

Options: 0 = Disabled 1 = Enabled

EAN-8 Status (UPC/EAN)

Definition: This field is enabled by default and will decode all EAN-8 symbols.

Serial Cmd: `<K489,UPC-A status,UPC-E status,EAN-8 status,EAN-13 status,supplementals required,supplemental 2 status,supplemental 5 status,UPC-A as EAN-13,UPC-E as UPC-A,EAN-8 as EAN-13>`

Default: Enabled

Options: 0 = Disabled 1 = Enabled
UPC/EAN

EAN-13 Status (UPC/EAN)

Definition: This field is enabled by default and will decode all EAN-13 symbols.

Serial Cmd: `<K489,UPC-A status,UPC-E status,EAN-8 status,EAN-13 status,supplementals required,supplemental 2 status,supplemental 5 status,UPC-A as EAN-13,UPC-E as UPC-A,EAN-8 as EAN-13>`

Default: Enabled

Options: 0 = Disabled 1 = Enabled

Supplementals Required (UPC/EAN)

Definition: A supplemental is a 2 or 5-character symbol appended to the main symbol. When enabled, the reader decodes supplemental symbol data that has been appended to the standard UPC or EAN symbol.

Serial Cmd: `<K489,UPC-A status,UPC-E status,EAN-8 status,EAN-13 status,supplementals required,supplemental 2 status,supplemental 5 status,UPC-A as EAN-13,UPC-E as UPC-A,EAN-8 as EAN-13>`

Default: Disabled

Options: 0 = Disabled 1 = Enabled

Supplemental 2 Status (UPC/EAN)

Definition: A 2-character symbol appended to the main symbol.

Serial Cmd: `<K489,UPC-A status,UPC-E status,EAN-8 status,EAN-13 status,supplementals required,supplemental 2 status,supplemental 5 status,UPC-A as EAN-13,UPC-E as UPC-A,EAN-8 as EAN-13>`

Default: Disabled

Options: 0 = Disabled 1 = Enabled

Supplemental 5 Status (UPC/EAN)

Definition: A 5-character symbol appended to the main symbol.

Serial Cmd: `<K489,UPC-A status,UPC-E status,EAN-8 status,EAN-13 status,supplementals required,supplemental 2 status,supplemental 5 status,UPC-A as EAN-13,UPC-E as UPC-A,EAN-8 as EAN-13>`

Default: Disabled

Options: 0 = Disabled 1 = Enabled
Symbologies

UPC-A as EAN-13 (UPC/EAN)

Definition: When enabled, UPC-A will be transmitted as EAN-13.

Serial Cmd: `<K489,UPC-A status,UPC-E status,EAN-8 status,EAN-13 status,supplementals required,supplemental 2 status,supplemental 5 status,UPC-A as EAN-13,UPC-E as UPC-A,EAN-8 as EAN-13>`

Default: Enabled

Options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Disabled</td>
</tr>
<tr>
<td>1</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

UPC-E as UPC-A (UPC/EAN)

Definition: When enabled, UPC-E will be transmitted as UPC-A.

Serial Cmd: `<K489,UPC-A status,UPC-E status,EAN-8 status,EAN-13 status,supplementals required,supplemental 2 status,supplemental 5 status,UPC-A as EAN-13,UPC-E as UPC-A,EAN-8 as EAN-13>`

Default: Disabled

Options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Disabled</td>
</tr>
<tr>
<td>1</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

EAN-8 as EAN-13 (UPC/EAN)

Definition: When enabled, EAN-8 will be transmitted as EAN-13.

Serial Cmd: `<K489,UPC-A status,UPC-E status,EAN-8 status,EAN-13 status,supplementals required,supplemental 2 status,supplemental 5 status,UPC-A as EAN-13,UPC-E as UPC-A,EAN-8 as EAN-13>`

Default: Disabled

Options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Disabled</td>
</tr>
<tr>
<td>1</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
Symbology Identifier

Definition: Symbology Identifier is a standard prefix set of characters that identifies the symbol type. When enabled, the reader analyzes and identifies the symbology and adds a three-character identifying prefix to the data:

-] (closed bracket character) indicating the presence of a symbology identifier.
- A, C, E, F, G, I, e, P, M
 (A = Code 39; C = Code 128/EAN-128; E = UPC/EAN; F = Codabar; G = Code 93; I = Interleaved 2 of 5; e = GS1 DataBar (RSS); P = Plessey Code; M = MSI Code)
- Modifier

Serial Cmd: <K450,0,symbology identifier status>
Default: Disabled
Options: 0 = Disabled 1 = Enabled

Explanation of Modifiers for Code 39, Codabar, and I-2/5
- For Code 39, Codabar, and Interleaved 2 of 5, the modifier indicates Check Character and Check Character Output status.
- For Code 39 only, Full ASCII must be enabled to see modifiers 4, 5, and 7.

<table>
<thead>
<tr>
<th>Modifier</th>
<th>Check Character</th>
<th>Check Character Output</th>
<th>Full ASCII conversion performed (Code 39 only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Disabled</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>1</td>
<td>Enabled</td>
<td>Disabled</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Enabled</td>
<td>Disabled</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Disabled</td>
<td>N/A</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Example:]AS indicates a Code 39 symbol with Check Character and Check Character Output enabled and Full ASCII conversion performed.

Explanation of Modifiers for Other Symbologies
- For Code 128/EAN-128, a 1 indicates EAN-128; otherwise the modifier is 0.
- For all other symbologies, the modifier is 0.
This section describes the **Terminal** window and **Macro** functions in **ESP**.
Terminal Window

Terminal Window

Click this button to display the Terminal view.

The following view will appear:

- **Copy, paste, save**
- **Terminal screen**
- **Clear screen**
- **Macros listed on this bar.**
- **Click on desired Macro to run.**

The Terminal allows you to send serial commands to the reader by typing commands in the Send text field or directly in the Terminal screen, by copying and pasting, or by using Macros.

The Terminal screen also displays symbol data or information from the reader.

You can right-click on the screen to bring up a menu of several options for managing data in the Terminal view.

MS-2 CCD Reader User's Manual
Find

The **Find** function allows you to enter text strings to be searched for in the Terminal window. For example, data from a series of symbols has been sent to the Terminal and you want to determine if a particular symbol whose data begins with “ABC” has been decoded.

1. Type “ABC” into the **Find** field.

2. Press **Enter**.

 The first instance of “ABC” will be highlighted in the Terminal window.

3. Click the **Find** button to the left of the text field to locate additional instances of “ABC”.
Send

The **Send** function allows you to enter serial commands and then send them to the reader.

1. Type the command into the **Send** box.

2. Press **Enter** to send the command to the reader.
3. Click the **Send** button to the left of the text field to send the command again.
Macros

Macros can be stored in a macro selection bar, edited in a separate window, and executed by clicking on the macro name.

When you click on the macro name, the macro is executed in the Terminal window. If the macro is a command, it is sent to the reader at the same time that it is displayed.

Editing a Macro

When you click the arrow next to any macro and select Edit Macro, the following dialog appears:

You can edit an existing Macro Name or Macro Value by typing a new name or value in the corresponding text field and clicking OK.
Terminal Window Menus

Right-click on the Terminal window to display the following menu:

<table>
<thead>
<tr>
<th>Menu Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy</td>
<td>Copy selected text to clipboard.</td>
</tr>
<tr>
<td>Paste</td>
<td>Paste from Terminal or other text.</td>
</tr>
<tr>
<td>Clear</td>
<td>Clear all text in Terminal window.</td>
</tr>
<tr>
<td>Select All</td>
<td>Select All text in the Terminal window.</td>
</tr>
<tr>
<td>Save...</td>
<td>Save... brings up a Save As dialog.</td>
</tr>
<tr>
<td>Change Font...</td>
<td>Change Font... of text in Terminal; brings up a Font dialog.</td>
</tr>
<tr>
<td>Change Echo Font...</td>
<td>Change Echo Font... to change typed text; brings up a Font dialog.</td>
</tr>
<tr>
<td>Enable Echo</td>
<td>Enable Echo enables Echo text (typed by user).</td>
</tr>
<tr>
<td>Change Background Color</td>
<td>Change Background Color of Terminal window.</td>
</tr>
<tr>
<td>Non-Printable Characters</td>
<td>Non-Printable Characters allows you to hide non-printable characters, or show them in Standard or Enhanced format.</td>
</tr>
<tr>
<td>Default Settings</td>
<td>Default Settings returns all of the above settings to default.</td>
</tr>
<tr>
<td>Keyboard Macros...</td>
<td>Keyboard Macros allows you to create new keyboard macro commands that can be sent from function keys (F2, F4, F5, etc.)</td>
</tr>
</tbody>
</table>

Terminal Dropdown Menu

The dropdown Terminal menu has Capture Text, Save Current Text, Send File, Find Next, and Find Previous functions, as well as the same functions defined above.

<table>
<thead>
<tr>
<th>Menu Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capture Text...</td>
<td>Capture Text... lets you append data in real time to a text file of your choice. While in operation, the text file cannot be opened. You can select Pause to interrupt the capture flow or Stop to end the flow and open the file.</td>
</tr>
<tr>
<td>Save Current Text...</td>
<td>Save Current Text... saves all text in the Terminal window to a text file.</td>
</tr>
<tr>
<td>Find Next</td>
<td>Find Next searches for a user-defined section of text in the Terminal.</td>
</tr>
<tr>
<td>Find Previous</td>
<td>Find Previous operates in the same way as Find Next, but searches backward through Terminal text.</td>
</tr>
<tr>
<td>Keyboard Macros...</td>
<td>Keyboard Macros...</td>
</tr>
</tbody>
</table>
Utility commands are generally commands that are performed during reader operations to perform miscellaneous operations on reader hardware. Serial utility commands are not prefaced with a "K" and a numeric value, nor do they require an initialization command (<A> and <Z>). They can be entered from ESP's Terminal or Utilities views.
Serial Utility Commands

<table>
<thead>
<tr>
<th>Type</th>
<th>Command</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
<td><#></td>
<td>Display Firmware Part Number</td>
</tr>
<tr>
<td>Device Control</td>
<td><H></td>
<td>Enable Reader</td>
</tr>
<tr>
<td></td>
<td><I></td>
<td>Disable Reader (Continuous, external trigger)</td>
</tr>
<tr>
<td>Default/Reset/Save</td>
<td><A></td>
<td>Reset (does not save for power-on)</td>
</tr>
<tr>
<td></td>
<td><Z></td>
<td>Save Current Settings for Power-On</td>
</tr>
<tr>
<td></td>
<td><Zrd></td>
<td>Recall Microscan Default Parameters and Save for Power-On</td>
</tr>
<tr>
<td>Reader Status Request</td>
<td><K?></td>
<td>Configuration Command Status</td>
</tr>
<tr>
<td>Trigger</td>
<td><char></td>
<td>Serial Trigger Character</td>
</tr>
</tbody>
</table>
Differences from Default

Clicking the **Differences from Default** button will cause ESP to check all stored configuration settings and compare them to default settings. All settings that are different than default will appear in the left column (shown below), and descriptions of those settings will appear in the right column.

- To save the **Differences from Default** report, either as plain text or as a tab-delimited text file, click **Save As**.
- Click **Send and Save** to send the settings to the reader and save them, or **Send to Reader** to send the settings without saving them.

Important: The use the **Differences from Default** feature, you must connect to the reader and **Receive Reader Settings** via the **Send/Recv** button on the toolbar.
Firmware

Firmware

Firmware Update

Application code versions are specific to your MS-2. Consult with your sales representative before downloading application code. If needed, application code will be sent to you in the form of a *.mhx file.

Contact Microscan’s help desk if you have difficulty downloading application code to the MS-2: helpdesk@microscan.com.

Downloading Application Code to the MS-2

1. Connect to the MS-2 via ESP.
2. Verify your current firmware using Firmware Verification in ESP Utilities.
3. Power-off the reader by detaching the reader cable from the IC-3USB adapter (if you are connected by USB) or IC-332 adapter (if you are connected by RS-232).
4. Attach the plug end of the Firmware Upgrade Adapter (61-000143-01) to the reader cable.
5. Attach the socket end of the Firmware Upgrade Adapter to the IC-3USB adapter (if you are connected by USB) or IC-332 adapter (if you are connected by RS-232) and power-on the reader.
6. Click the Start button in ESP Utilities to open the firmware update utility.
7. Select the reader from the Target Device dropdown menu.
8. Select 8MHz from the Crystal Frequency dropdown menu.

(Continued on next page)
9. Click **Open**, select the appropriate firmware file (a `.mhx` file) and click **OK**.

10. Click the **Set Environment** button to bring up the COM Port menu.

11. Select the appropriate COM Port and click **OK**.

12. Click the **Download** button. When the following dialog appears, cycle power to the reader (turn power off and then back on) and then click **OK** to continue.

13. Click **OK** again once firmware is downloaded.

14. Click the **Erase** button to clear old firmware.

15. Click **OK** again when you see the dialog stating that old firmware has been erased.

16. Click the **Full Operation(D+E+B+P)** button. When the dialog shown in step 12 appears, cycle power to the reader (turn power off and then back on), and then click **OK** to complete the download process.

17. Click **OK** again when you see the dialog stating that the firmware download is complete.

18. Detach the Firmware Upgrade Adapter (61-000143-01) and re-connect the MS-2 in its original configuration.

19. Verify installation of the new firmware using **Firmware Verification** in **ESP Utilities**.

20. If the firmware update procedure fails, check hardware and pinout connectivity, and repeat the procedure.

 Caution: Do not interrupt power or disconnect the host cable while download is in progress. Be sure that each download is complete before moving on to the next.

 Important: When updating firmware, be sure that the application code and boot code versions are mutually compatible.
Firmware

Firmware Verification

Request Part Number by ESP

ESP allows you to send a request to the MS-2 for the application code part number.

1. Click the **Firmware** tab.
2. From the dropdown menu to the left of the **Request Part No.** button, select **App Code**.
3. The application code part number will be displayed in the text field to the right of the **Request Part No.** button.
Utilities

Device Control

Disable Reader

Usage: This feature is useful during extended periods when no symbols are being decoded, or when the reader is being configured.

Definition: Sending `<I>` will turn the reader off.

Serial Cmd: `<I>`

>Note: `<I>` only disables Continuous Read and the external trigger. Serial triggers will activate a read cycle.

Enable Reader

Definition: Sending `<H>` allows the reader to trigger on any available trigger source.

Serial Cmd: `<H>`
Default/Reset/Save

Understanding and controlling your reader’s active, saved, and default settings is critical to its successful operation.

<table>
<thead>
<tr>
<th>Function</th>
<th>Serial Cmd</th>
<th>ESP (first, right-click in any menu tree)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset (not saved for power-on)</td>
<td><A></td>
<td>Save to Reader, Send No Save</td>
</tr>
<tr>
<td>Save Current Settings for Power-On</td>
<td><Z></td>
<td>Save to Reader, Send and Save</td>
</tr>
<tr>
<td>Recall Microscan Default Parameters and Save for Power-On</td>
<td><Zrd></td>
<td>No</td>
</tr>
</tbody>
</table>

a. When you right-click in a menu tree and select Default Current Menu Settings or Default All ESP Settings, it is important to note that only ESP settings are defaulted. To save these defaults to the reader itself, you need to follow up with a Save to Reader, Send and Save command.

Reset

Reset (“A” command) affects only current settings (active memory) and does not save for power-on.

Save for Power-On

Power-on parameters (“Z” commands) are saved, recalled, and loaded into current parameters when power is cycled to the reader.

Important: The following commands must be followed by a <Z> to be saved for power-on: Host Protocol, Baud Rate, Data Bits, Stop Bits, Parity, Trigger Characters (Delimited, Start, Stop), Preamble, Postamble, and No Read Message.

All other parameters are saved for power-on without a <Z>. However, a <Zrd> affects all parameters.
Utilities

Reader Status Request

<K?> Configuration Command Status

This is the fastest way to learn the reader's current configuration. Sending this request will return the current settings of all commands, starting with the lowest K command value and ending with the highest K command value.
Reader Status Request
Contents

Appendix A General Specifications ... A-2
Appendix B Electrical Specifications ... A-5
Appendix C Serial Configuration Commands ... A-6
Appendix D Communications Protocol ... A-9
Appendix E ASCII Table .. A-10
Appendix F Operational Tips ... A-11
Appendix G Using an External Trigger .. A-12
Appendix H Glossary of Terms .. A-13
General Specifications

Appendix A — General Specifications

Mechanical
Height: 0.85” (21.6 mm)
Width: 1.75” (44.5 mm)
Length: 1.75” (44.5 mm)
Weight: 2 oz. (57 g)

Design
Sensor: CCD linear image sensor
Optics: 660 nm visible LED

Scanning Performance
Scan Rate: 220 scans/sec
Min. X Dimension: Down to 0.084 mm (3.3 mil) on Code 39
Depth of Field: 0.8 to 325 mm (12.8”)
Symbol Width: Up to 178 mm (7”) on 0.5 mm (20 mil) symbol

Communications
Interface: RS-232

Connector
Type: 3-foot cable terminated with 15-Pin High Density D-sub Socket Connector

Symbologies

Environmental
Operating Temperature: –20° to 50° C (–4° to 122° F)
Storage Temperature: –20° to 60° C (–4° to 140° F)
Relative Humidity: 20% to 85% (non-condensing)
Ambient Light: Works in any lighting conditions, from 0 to 70,000 lux

CE Mark
Radiated and Conducted Emissions Designed for: EN 55022:1998 ITE Disturbances Class A

Electrical
Power: 5V +/- 5%, 300 mV p-p max. ripple, 150mA @ 5V (typ.)

Discrete I/O
Trigger Input: 4.7 to 24V rated (0 µA @ 5V – 600 µA @ 0V)
Read Ranges

![Diagram of Read Ranges](image)

<table>
<thead>
<tr>
<th>Narrow-bar-width</th>
<th>Read Range</th>
<th>Scan Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Density</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.005" (.127 mm)</td>
<td>.9 – 2.1" (23 – 53 mm)</td>
<td>2.0" (51 mm) at 1.7" (43 mm)</td>
</tr>
<tr>
<td>.010" (.254 mm)</td>
<td>.8 – 3.3" (20 – 84 mm)</td>
<td>2.5" (64 mm) at 2.9" (74 mm)</td>
</tr>
<tr>
<td>.015" (.38 mm)</td>
<td>.8 – 4.3" (20 – 109 mm)</td>
<td>3.0" (76 mm) at 3.5" (84 mm)</td>
</tr>
<tr>
<td>Low Density</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.005" (.127 mm)</td>
<td>1.4 – 3.3" (36 – 84 mm)</td>
<td>2.4" (61 mm) at 2.8" (71 mm)</td>
</tr>
<tr>
<td>.010" (.254 mm)</td>
<td>1.3 – 7.4" (30 – 188 mm)</td>
<td>4.2" (107 mm) at 5.8" (147 mm)</td>
</tr>
<tr>
<td>.020" (.508 mm)</td>
<td>1.3 – 12.8" (30 – 325 mm)</td>
<td>7.0" (178 mm) at 10.8" (274 mm)</td>
</tr>
</tbody>
</table>

Note: All values are based on a Grade B Code 39 symbol.
General Specifications

FIS Options

<table>
<thead>
<tr>
<th>MS-2 CCD Reader</th>
<th>FIS-0002-0001G</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCD Reader, Standard, Low Density, RS-232, 5VDC</td>
<td>FIS-0002-0002G</td>
</tr>
<tr>
<td>CCD Reader, Right Angle, Low Density, RS-232, 5VDC</td>
<td>FIS-0002-0003G</td>
</tr>
<tr>
<td>CCD Reader, Standard, High Density, RS-232, 5VDC</td>
<td>FIS-0002-0004G</td>
</tr>
<tr>
<td>CCD Reader, Right Angle, High Density, RS-232, 5VDC</td>
<td></td>
</tr>
</tbody>
</table>

Safety Certifications

FCC, UL/cUL, CE, RoHS/WEEE

![ISO Certification](image)

ISO 9001:2000 Certified Quality Management System

Issued by TUV USA Inc., Member of TUV NORD Group, Cert. No. 06-1080

©2008 Microscan Systems, Inc.

All rights reserved. Specifications subject to change.

Product specifications are given for typical performance at 25°C (77°F) using grade A labels. Performance characteristics may vary at high temperatures or other environmental extremes. Warranty—One year limited warranty on parts and labor. Extended warranty available.
Appendices

Appendix B — Electrical Specifications

Power: 5V +/- 5%, 300 mV p-p max. ripple, 150mA @ 5V (typ.)

Host Connector / Pin Assignments
15-Pin High Density D-sub Socket Connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>Host RS-232</th>
<th>In/Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5 Power</td>
<td>In</td>
</tr>
<tr>
<td>2</td>
<td>TxD</td>
<td>Out</td>
</tr>
<tr>
<td>3</td>
<td>RxD</td>
<td>In</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>N/C</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>RTS</td>
<td>Out</td>
</tr>
<tr>
<td>7</td>
<td>N/C</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Firmware Upgrade</td>
<td>In (Active Low)</td>
</tr>
<tr>
<td>9</td>
<td>Trigger In</td>
<td>In (Active Low)</td>
</tr>
<tr>
<td>10</td>
<td>CTS</td>
<td>In</td>
</tr>
<tr>
<td>11</td>
<td>N/C</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>N/C</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>CHASSIS GND</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>N/C</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>N/C</td>
<td></td>
</tr>
</tbody>
</table>
Serial Configuration Commands

Appendix C — Serial Configuration Commands

Note: For a list of utility commands such as read rate requests, device control options, and reader status requests, see Serial Utility Commands on page 7-2.

<table>
<thead>
<tr>
<th>Communications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Port Connections</td>
<td><code><K100</code>, baud rate, parity, stop bits, *data bits>`</td>
</tr>
<tr>
<td>Host Port Protocol</td>
<td><code><K140</code>, *protocol>`</td>
</tr>
<tr>
<td>Preamble</td>
<td><code><K141</code>, status, *preamble characters>`</td>
</tr>
<tr>
<td>Postamble</td>
<td><code><K142</code>, status, *postamble characters>`</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Read Cycle</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger Mode</td>
<td><code><K200</code>, *trigger mode>`</td>
</tr>
<tr>
<td>Serial Trigger Character</td>
<td><code><K201</code>, *serial trigger character>`</td>
</tr>
<tr>
<td>No Decode Timeout</td>
<td><code><K220</code>, *0, seconds>`</td>
</tr>
<tr>
<td>Decodes Before Output</td>
<td><code><K221</code>, *decodes before output>`</td>
</tr>
<tr>
<td>Number of Symbols</td>
<td><code><K222</code>, *number of symbols>`</td>
</tr>
<tr>
<td>Start Trigger Character</td>
<td><code><K229</code>, *start character>`</td>
</tr>
<tr>
<td>Stop Trigger Character</td>
<td><code><K230</code>, *stop character>`</td>
</tr>
<tr>
<td>Time Between Identical Decodes</td>
<td><code><K503</code>, *time between identical decodes>`</td>
</tr>
<tr>
<td>Reader Setup</td>
<td><code><K522</code>, shutter speed, minimum speed, *maximum speed>`</td>
</tr>
<tr>
<td>No Read Message</td>
<td><code><K714</code>, status, *No Read message>`</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbologies</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbology Identifier</td>
<td><code><K450</code>, *0, symbology identifier status>`</td>
</tr>
<tr>
<td>Code 39</td>
<td><code><K470</code>, status, check character status, check character output status, 0, minimum symbol length, *full ASCII set>`</td>
</tr>
<tr>
<td>Codabar</td>
<td><code><K471</code>, status, 0, start/stop match output status, 0, symbol length status, symbol length, check character status, *check character output status>`</td>
</tr>
<tr>
<td>Interleaved 2 of 5</td>
<td><code><K472</code>, status, check character status, check character output status, symbol length #1, *symbol length #2>`</td>
</tr>
<tr>
<td>Code 128/EAN 128</td>
<td><code><K474</code>, status, 0, minimum symbol length, *1,1,0, application record separator character>`</td>
</tr>
<tr>
<td>Code 93</td>
<td><code><K475</code>, status, *0, minimum symbol length>`</td>
</tr>
<tr>
<td>DataBar-14 (RSS-14)</td>
<td><code><K482</code>, *status>`</td>
</tr>
<tr>
<td>DataBar Limited (RSS Limited)</td>
<td><code><K483</code>, *status>`</td>
</tr>
<tr>
<td>DataBar Expanded (RSS Expanded)</td>
<td><code><K484</code>, *status>`</td>
</tr>
<tr>
<td>MSI Code</td>
<td><code><K486</code>, status, check character mode, check character output status, *0, minimum symbol length>`</td>
</tr>
<tr>
<td>Plessey Code</td>
<td><code><K487</code>, status, check character output status, *0, minimum symbol length>`</td>
</tr>
<tr>
<td>Industrial 2 of 5</td>
<td><code><K488</code>, status, check character status, check character output status, format, symbol length #1, *symbol length #2>`</td>
</tr>
<tr>
<td>UPC/EAN</td>
<td><code><K489</code>, UPC-A status, UPC-E status, EAN-8 status, EAN-13 status, supplementals required, supplemental 2 status, supplemental 5 status, UPC-A as EAN-13, UPC-E as UPC-A, *EAN-8 as EAN-13>`</td>
</tr>
</tbody>
</table>
Serial Command Format
Serial commands are of two types: utility and configuration.

Rules that apply to both Utility and Configuration commands
• A less than < and greater than > character enclose the commands.
• Commands and data are “case-sensitive.” That is, characters must be entered as upper or lower case, as specified.

Serial Utility Commands
These are sent during operations and are not followed by <A> or <Z>.

Serial Configuration “K” Commands
These begin with a single “K” character followed by a 3-digit numeric value, data fields, and an initializing command, as follows:
<K numeric value, data, data,... etc.><initializing command>
An initializing command <A> or <Z> may follow the command. A <Z> initializes the reader’s memory and saves for power-on; an <A> initializes the reader’s memory but does not save for power-on.
For example, to enable UPC and save the change for power-on, send <K473,1><Z>.
To change Baud Rate to 4800 and reset without saving changes for power-on, send <K100,3><A>.

Serial Configuration Command Conventions
• All data fields (except the last) must be followed by a comma without a space.
• Typically, NUL cannot be used. The characters <,>, and , can be used, but only if entered as hex pairs.
• All fields preceding a modified field must be included unless there is no change in the preceding fields.
• If there is no change in preceding fields, then commas alone can be entered in these fields. For example, if only the last field in the command <K100,4,1,0,1> is changing, it can be entered as <K100,,1>.
• All fields following a modified field can be omitted. For example, to change Baud Rate to 4800 without changing the other host port paramters, send <K100,3>.

Concatenating Configuration Commands
Commands can be concatenated (added together) in a single string.
For example, <K100,4><K222,1><K470,0><A> sets the Baud Rate to 9600, enables Multiple symbol mode, disables Code 39, and resets the data buffers (without saving the changes for power-on).
Serial Configuration Commands

Configuration Command Status Request
To learn the reader’s current configuration, send the Configuration Command Status command: <K?>.

Entering Control Characters in Serial Commands
To enter control characters within a serial command, hold down the Ctrl key while typing the desired character.
Example: To enter a carriage return and line feed (^M^J), enter <K141,CTRL-m CTRL-j>.
Appendix D — Communications Protocol

Communications Protocol Command Table

<table>
<thead>
<tr>
<th>Protocol Command (Mnemonic displayed on menu)</th>
<th>Control Characters (Entered in menu or serial command)</th>
<th>Hex Value</th>
<th>Effect of Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES</td>
<td>^D</td>
<td>04</td>
<td>Reset</td>
</tr>
<tr>
<td>REQ</td>
<td>^E</td>
<td>05</td>
<td>Request</td>
</tr>
<tr>
<td>EOT</td>
<td>^D</td>
<td>04</td>
<td>Reset</td>
</tr>
<tr>
<td>STX</td>
<td>^B</td>
<td>02</td>
<td>Start of Text</td>
</tr>
<tr>
<td>ETX</td>
<td>^C</td>
<td>03</td>
<td>End of Text</td>
</tr>
<tr>
<td>ACK</td>
<td>^F</td>
<td>06</td>
<td>Acknowledge</td>
</tr>
<tr>
<td>NAK</td>
<td>^U</td>
<td>15</td>
<td>Negative Acknowledge</td>
</tr>
<tr>
<td>XON</td>
<td>^Q</td>
<td>11</td>
<td>Begin Transmission</td>
</tr>
<tr>
<td>XOFF</td>
<td>^S</td>
<td>13</td>
<td>Stop Transmission</td>
</tr>
</tbody>
</table>
Appendix E — ASCII Table

<table>
<thead>
<tr>
<th>Dec</th>
<th>Hex</th>
<th>Mne</th>
<th>Ctrl</th>
<th>Dec</th>
<th>Hex</th>
<th>Ch</th>
<th>Dec</th>
<th>Hex</th>
<th>Ch</th>
<th>Dec</th>
<th>Hex</th>
<th>Ch</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
<td>NUL</td>
<td>^@</td>
<td>32</td>
<td>20</td>
<td>SP</td>
<td>64</td>
<td>40</td>
<td>@</td>
<td>96</td>
<td>60</td>
<td>D</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
<td>SOH</td>
<td>^A</td>
<td>33</td>
<td>21</td>
<td>!</td>
<td>65</td>
<td>41</td>
<td>A</td>
<td>97</td>
<td>61</td>
<td>a</td>
</tr>
<tr>
<td>02</td>
<td>02</td>
<td>STX</td>
<td>^B</td>
<td>34</td>
<td>22</td>
<td>"</td>
<td>66</td>
<td>42</td>
<td>B</td>
<td>98</td>
<td>62</td>
<td>b</td>
</tr>
<tr>
<td>03</td>
<td>03</td>
<td>ETX</td>
<td>^C</td>
<td>35</td>
<td>23</td>
<td>#</td>
<td>67</td>
<td>43</td>
<td>C</td>
<td>99</td>
<td>63</td>
<td>c</td>
</tr>
<tr>
<td>04</td>
<td>04</td>
<td>EOT</td>
<td>^D</td>
<td>36</td>
<td>24</td>
<td>$</td>
<td>68</td>
<td>44</td>
<td>D</td>
<td>100</td>
<td>64</td>
<td>d</td>
</tr>
<tr>
<td>05</td>
<td>05</td>
<td>ENQ</td>
<td>^E</td>
<td>37</td>
<td>25</td>
<td>%</td>
<td>69</td>
<td>45</td>
<td>E</td>
<td>101</td>
<td>65</td>
<td>e</td>
</tr>
<tr>
<td>06</td>
<td>06</td>
<td>ACK</td>
<td>^F</td>
<td>38</td>
<td>26</td>
<td>&</td>
<td>70</td>
<td>46</td>
<td>F</td>
<td>102</td>
<td>66</td>
<td>f</td>
</tr>
<tr>
<td>07</td>
<td>07</td>
<td>BEL</td>
<td>^G</td>
<td>39</td>
<td>27</td>
<td>'</td>
<td>71</td>
<td>47</td>
<td>G</td>
<td>103</td>
<td>67</td>
<td>g</td>
</tr>
<tr>
<td>08</td>
<td>08</td>
<td>BS</td>
<td>^H</td>
<td>40</td>
<td>28</td>
<td>(</td>
<td>72</td>
<td>48</td>
<td>H</td>
<td>104</td>
<td>68</td>
<td>h</td>
</tr>
<tr>
<td>09</td>
<td>09</td>
<td>HT</td>
<td>^I</td>
<td>41</td>
<td>29</td>
<td>)</td>
<td>73</td>
<td>49</td>
<td>I</td>
<td>105</td>
<td>69</td>
<td>i</td>
</tr>
<tr>
<td>10</td>
<td>0A</td>
<td>LF</td>
<td>^J</td>
<td>42</td>
<td>2A</td>
<td>*</td>
<td>74</td>
<td>4A</td>
<td>J</td>
<td>106</td>
<td>6A</td>
<td>j</td>
</tr>
<tr>
<td>11</td>
<td>0B</td>
<td>VT</td>
<td>^K</td>
<td>43</td>
<td>2B</td>
<td>+</td>
<td>75</td>
<td>4B</td>
<td>K</td>
<td>107</td>
<td>6B</td>
<td>k</td>
</tr>
<tr>
<td>12</td>
<td>0C</td>
<td>FF</td>
<td>^L</td>
<td>44</td>
<td>2C</td>
<td>,</td>
<td>76</td>
<td>4C</td>
<td>L</td>
<td>108</td>
<td>6C</td>
<td>l</td>
</tr>
<tr>
<td>13</td>
<td>0D</td>
<td>CR</td>
<td>^M</td>
<td>45</td>
<td>2D</td>
<td>-</td>
<td>77</td>
<td>4D</td>
<td>M</td>
<td>109</td>
<td>6D</td>
<td>m</td>
</tr>
<tr>
<td>14</td>
<td>0E</td>
<td>SO</td>
<td>^N</td>
<td>46</td>
<td>2E</td>
<td>.</td>
<td>78</td>
<td>4E</td>
<td>N</td>
<td>110</td>
<td>6E</td>
<td>n</td>
</tr>
<tr>
<td>15</td>
<td>0F</td>
<td>SI</td>
<td>^O</td>
<td>47</td>
<td>2F</td>
<td>/</td>
<td>79</td>
<td>4F</td>
<td>O</td>
<td>111</td>
<td>6F</td>
<td>o</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>DLE</td>
<td>^P</td>
<td>48</td>
<td>30</td>
<td>0</td>
<td>80</td>
<td>50</td>
<td>P</td>
<td>112</td>
<td>70</td>
<td>p</td>
</tr>
<tr>
<td>17</td>
<td>11</td>
<td>DC1</td>
<td>^Q</td>
<td>49</td>
<td>31</td>
<td>1</td>
<td>81</td>
<td>51</td>
<td>Q</td>
<td>113</td>
<td>71</td>
<td>q</td>
</tr>
<tr>
<td>18</td>
<td>12</td>
<td>DC2</td>
<td>^R</td>
<td>50</td>
<td>32</td>
<td>2</td>
<td>82</td>
<td>52</td>
<td>R</td>
<td>114</td>
<td>72</td>
<td>r</td>
</tr>
<tr>
<td>19</td>
<td>13</td>
<td>DC3</td>
<td>^S</td>
<td>51</td>
<td>33</td>
<td>3</td>
<td>83</td>
<td>53</td>
<td>S</td>
<td>115</td>
<td>73</td>
<td>s</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>DC4</td>
<td>^T</td>
<td>52</td>
<td>34</td>
<td>4</td>
<td>84</td>
<td>54</td>
<td>T</td>
<td>116</td>
<td>74</td>
<td>t</td>
</tr>
<tr>
<td>21</td>
<td>15</td>
<td>NAK</td>
<td>^U</td>
<td>53</td>
<td>35</td>
<td>5</td>
<td>85</td>
<td>55</td>
<td>U</td>
<td>117</td>
<td>75</td>
<td>u</td>
</tr>
<tr>
<td>22</td>
<td>16</td>
<td>SYN</td>
<td>^V</td>
<td>54</td>
<td>36</td>
<td>6</td>
<td>86</td>
<td>56</td>
<td>V</td>
<td>118</td>
<td>76</td>
<td>v</td>
</tr>
<tr>
<td>23</td>
<td>17</td>
<td>ETB</td>
<td>^W</td>
<td>55</td>
<td>37</td>
<td>7</td>
<td>87</td>
<td>57</td>
<td>W</td>
<td>119</td>
<td>77</td>
<td>w</td>
</tr>
<tr>
<td>24</td>
<td>18</td>
<td>CAN</td>
<td>^X</td>
<td>56</td>
<td>38</td>
<td>8</td>
<td>88</td>
<td>58</td>
<td>X</td>
<td>120</td>
<td>78</td>
<td>x</td>
</tr>
<tr>
<td>25</td>
<td>19</td>
<td>EM</td>
<td>^Y</td>
<td>57</td>
<td>39</td>
<td>9</td>
<td>89</td>
<td>59</td>
<td>Y</td>
<td>121</td>
<td>79</td>
<td>y</td>
</tr>
<tr>
<td>26</td>
<td>1A</td>
<td>SUB</td>
<td>^Z</td>
<td>58</td>
<td>3A</td>
<td>:</td>
<td>90</td>
<td>5A</td>
<td>Z</td>
<td>122</td>
<td>7A</td>
<td>z</td>
</tr>
<tr>
<td>27</td>
<td>1B</td>
<td>ESC</td>
<td>^[</td>
<td>59</td>
<td>3B</td>
<td>;</td>
<td>91</td>
<td>5B</td>
<td></td>
<td></td>
<td>123</td>
<td>7B</td>
</tr>
<tr>
<td>28</td>
<td>1C</td>
<td>FS</td>
<td>^\</td>
<td>60</td>
<td>3C</td>
<td><</td>
<td>92</td>
<td>5C</td>
<td>\</td>
<td></td>
<td>124</td>
<td>7C</td>
</tr>
<tr>
<td>29</td>
<td>1D</td>
<td>GS</td>
<td>^]</td>
<td>61</td>
<td>3D</td>
<td>=</td>
<td>93</td>
<td>5D</td>
<td>]</td>
<td></td>
<td>125</td>
<td>7D</td>
</tr>
<tr>
<td>30</td>
<td>1E</td>
<td>RS</td>
<td>^^</td>
<td>62</td>
<td>3E</td>
<td>></td>
<td>94</td>
<td>5E</td>
<td>^</td>
<td></td>
<td>126</td>
<td>7E</td>
</tr>
<tr>
<td>31</td>
<td>1F</td>
<td>US</td>
<td>^_</td>
<td>63</td>
<td>3F</td>
<td>?</td>
<td>95</td>
<td>5F</td>
<td>_</td>
<td></td>
<td>127</td>
<td>7F</td>
</tr>
</tbody>
</table>
Appendix F — Operational Tips

Cleaning
The MS-2 CCD Reader has a hard-coated window that should only be cleaned with alcohol (100% isopropyl).

Mounting
When mounting the MS-2 CCD Reader, do not insulate the stand mount. The bottom panel is the hottest part of the reader and metal-to-metal contact is necessary for heat dissipation.
Appendix G — Using an External Trigger

Two types of inputs are used on Microscan readers. 5 volt devices have NPN trigger inputs. 10-28 volt devices have optoisolated inputs and outputs.

5 Volt Devices
To trigger a 5 volt device, the input has to be pulled down to “signal ground” (NPN). This can be done by relays or by a transistor-sourced signal. If a 5 volt device is used in combination with an IC-332, it must be connected as a 10-28 volt device.

10-28 Volt Devices
To trigger a 10-28 volt device, a small amount of current needs to flow from “Trigger +” to “Trigger –”. If a PNP source is used, “Trigger –” must be connected to “signal ground”. If an NPN source is used, “Trigger +” must be connected to the supply voltage.
Appendix H — Glossary of Terms

Aberration — The failure of an optical lens to produce an exact point-to-point correspondence between the object and its resulting image. Various types are chromatic, spherical, coma, astigmatism and distortion.

Absorption — The loss of light of certain wavelengths as it passes through a material and is converted to heat or other forms of energy. (–)

Active Illumination — Lighting an area with a light source coordinated with the acquisition of an image. Strobed flash tubes and pulsed lasers are examples.

ADC — See Analog-to-Digital Converter.
A/D Converter — See Analog-to-Digital Converter.
AGC — See Automatic Gain Control.
Ambient Light — Light which is present in the environment of the front end of a reader and generated from outside sources. This light, unless used for actual illumination, will be treated as background noise by the reader.

Analog — A smooth, continuous voltage or current signal or function whose magnitude (value) is the information.
Analog-to-Digital Converter (A/D Converter or ADC) — A device that converts an analog voltage or current signal to a discrete series of digitally encoded numbers (signal) for computer processing.

Application-Specific Integrated Circuit (ASIC) — An integrated circuit that is customized for a particular kind of use, rather than general use. All vision system elements including firmware can be integrated into one ASIC.

Automatic Gain Control (AGC) — Adjustment to signal strength that seeks to maintain a constant level regardless of the distance between a reader and symbol.
Auxiliary Port — RS-232 connection to an auxiliary terminal or device for remote viewing.

Baud Rate — The number of discrete signal events per second; bits per second.
CCD — See Charge-Coupled Device.

Charge-Coupled Device (CCD) — A semiconductor device with an array of light-sensitive elements that converts light images into electrical signals.
Check Character — A Modulus 43 or Modulus 10 character that is added to encoded symbol data for additional data integrity.

Connector — A plug or socket on a device or cable providing in/out connectivity for various circuits and pins.
Concentrator — Intermediary device that relays data from readers to a host and commands from the host to the readers or other devices.

DAC — See Digital-to-Analog Converter.

Daisy Chain — Linkage of primary and secondary readers allowing data to be relayed up to the host via auxiliary port connections.

Decode — A Good Read. The successful interpretation and output of the information encoded in a symbol.

Default — Restores ROM or flash settings and initializes serial commands.
Glossary of Terms

Delimited — A delimited command or field is bracketed by predefined characters.

Decode Rate — The number of good reads per second achieved by a reader.

Darkfield Illumination — Lighting of objects, surfaces, or particles at very shallow or low angles, so that light does not directly enter a reader’s optical hardware.

Depth-of-Field — The in-focus range of a reader. Measured from the distance behind an object to the distance in front of the object with all objects appearing in focus.

Diffused Lighting — Scattered soft lighting from a wide variety of angles used to eliminate shadows and specular glints from profiled, highly reflective surfaces.

Digital-to-Analog Converter (DAC) — A VLSI circuit used to convert digitally processed images to analog for display on a monitor.

Digital Signal Processor (DSP) — A VLSI chip designed for ultra-high-speed arithmetic processing.

Discrete I/O — Inputs and outputs characterized by discrete signal transitions from one voltage level to another so that digital switching can occur.

Direct Memory Access (DMA) — A capability provided by some computer bus architectures that allows data to be sent directly to memory from an attached device.

DSP — See Digital Signal Processor.

EPROM — See Erasable Programmable Read-Only Memory.

Embedded Memory — Onboard memory device such as EPROM or flash.

End of Read Cycle — The time or condition at which the reader stops expecting symbol information to decode.

Erasable Programmable Read-Only Memory (EPROM) — A memory chip that retains data when its power supply is turned off; “non-volatile memory”.

External Edge — Allows a read cycle to be initiated by a trigger signal from an object detector when it detects the appearance of an object (rising edge). The read cycle ends with a good read, a timeout, or a new trigger.

External Level — Allows a read cycle to be initiated by a trigger signal from an object detector. The read cycle ends when the object moves out of the detector’s range.

Falling Edge — A change of state (to inactive) associated with a level trigger.

Field-Programmable Gate Array (FPGA) — A semiconductor device containing programmable interconnects and logic components.

Firmware — Software hard-coded in non-volatile memory (ROM), and closely tied to specific pieces of hardware.

Fixed Symbol Length — Increases data integrity by ensuring that only a symbol length will be accepted.

Focal Distance — In optics, the distance from the lens to the focal plane.

Focal Plane — Usually found at the image sensor, it is a plane perpendicular to the lens axis at the point of focus (−).

Focus — Any given point in an image at which light converges; the focal point.

FPGA — See Field-Programmable Gate Array.

Full Duplex — A communications system in which signals can travel simultaneously between devices.
Good Read — A decode. The successful scanning and decoding of the information encoded in a bar code symbol.

Half Duplex — A communications system in which signals can travel between devices in both directions, but not simultaneously.

Host — A computer, PLC, or other device that is used to execute commands and process data and discrete signals.

Image Sensor — A device that converts a visual image to an electrical signal; a CCD, for example.

Initialize — Implement serial configuration commands into the reader’s active memory.

Input — A channel or communications line. Decoded data or a discrete signal that is received by a device.

Ladder Orientation — A linear symbol orientation in which the bars are parallel to the symbol’s direction of travel.

Light-Emitting Diode (LED) — A semiconductor device that emits light when conducting current.

Lens — A transparent piece of material with curved surfaces which either converge or diverge light rays.

Multidrop — A communications protocol for networking two or more readers or other devices with a concentrator (or controller) and characterized by the use of individual device addresses and the RS-485 standard.

Normally Closed — A discrete output state that is only active when open.

Normally Open — A discrete output state that is only active when closed.

Object Plane — An imaginary plane in the field of view, focused by a reader’s optical system at the corresponding image plane on the sensor.

Output — A channel or communications line. Data or discrete signals that are transmitted or displayed by a device.

Parity — An error detection routine in which one data bit in each character is set to 1 or 0 so that the total number of 1 bits in the data field is even or odd.

Picket Fence Orientation — A linear symbol orientation in which the bars are perpendicular to the symbol’s direction of travel.

Pitch — Rotation of a linear or 2D symbol around an axis parallel to the symbol length on the substrate. See the illustration below.
Glossary of Terms

PLC — See Programmable Logic Controller.

Port — Logical circuit for data entry and exit. (One or more ports may be included within a single connector.)

Programmable Logic Controller (PLC) — An electronic device used in industrial automation environments such as factory assembly lines and automotive manufacturing facilities.

Protocol — The rules for communication between devices, providing a means to control the orderly flow of information between linked devices.

Random Access Memory (RAM) — A data storage system used in computers, composed of integrated circuits that allow access to stored data in any sequence without movement of physical parts.

Read Cycle — A programmed period of time or condition during which a reader will accept symbol input.

Read-Only Memory (ROM) — A data storage medium used in computers and other electronics, primarily used to distribute firmware.

Skew — Rotation of a linear or 2D symbol around an axis parallel to the symbol height on the substrate. See the illustration under the definition of Pitch.

Substrate — The surface upon which a symbol is printed, stamped, or etched.

Symbol Transitions — The transition of bars and spaces on a symbol, used to detect the presence of a symbol on an object.

Symbology — A symbol type, such as Code 39 or Code 128, with special rules to define the widths and positions of bars and spaces to represent specific numeric or alphanumeric information.

Tilt — Rotation of a linear or 2D symbol around an axis perpendicular to the substrate. See the illustration under the definition of Pitch.

Trigger — A signal, transition, or character string that initiates a read cycle.

Very Large-Scale Integration (VLSI) — The creation of integrated circuits by combining thousands of transistor-based circuits on a single chip.

VLSI — See Very Large-Scale Integration.
Hyperlink Index

A
A/D Converter
Aberration
About the MS-2 CCD Reader
About This Manual
Absorption
Active Illumination
ADC
Add / Remove Exception
Add Macro
Advanced Options
AGC
Ambient Light
Analog
Analog-to-Digital Converter
Appendices
Application Mode
Application Record Separator Character (Code 128/EAN 128)
Application-Specific Integrated Circuit
ASCII Table
Ask to Save ESP File when Quitting
Autoconnect
Automatic Gain Control
Auxiliary Port

B
Bar Code Options
Baud Rate
Baud Rate, Host Port
Begin Transmission

C
Capture Text
CCD
CE Mark
Change Background Color
Change Echo Font
Change Font
Change Keyboard Macros
D

Charge-Coupled Device
Check Character
Check Character Mode (MSI Code)
Check Character Output (Codabar)
Check Character Output Status (Code 39)
Check Character Output Status (Industrial 2 of 5)
Check Character Output Status (Interleaved 2 of 5)
Check Character Output Status (MSI Code)
Check Character Output Status (Plessey Code)
Check Character Status (Codabar)
Check Character Status (Code 39)
Check Character Status (Industrial 2 of 5)
Check Character Status (Interleaved 2 of 5)
Check Hardware
Cleaning the Imager
Clear
Codabar
Code 128 / EAN 128
Code 39
Code 93
Communications
Communications by ESP
Communications Protocol
Communications Protocol Command Table
Communications Serial Commands
Concatenating Configuration Commands
Concentrator
Configuration Command Status
Configuration Command Status Request
Configuration Setting Changes
Configure the Reader
Connect the System
Connect to Readers via TCP/IP
Connecting by RS-232
Connecting by USB
Connector
Continuous Read
Continuous Read 1 Output Emulation
Control Characters
Copy

DAC
Daisy Chain
Darkfield Illumination
Data Bits, Host Port
DataBar Expanded (RSS Expanded)
DataBar Limited (RSS Limited)
DataBar-14 (RSS-14)
Decode
Decode Rate
Decodes Before Output
Default
Default / Reset / Save
Default Macros
Default Settings
Defaulting
Delimited
Depth-of-Field
Design
Device Control
Differences from Default
Diffused Lighting
Digital Signal Processor
Digital-to-Analog Converter
Direct Memory Access
Disable Reader
Disclaimer
Discrete I/O
Display Incoming Data Even When Not in Focus
Document Memo
Downloading Application Code
Downloading ESP from the Web
DSP

EAN-13 Status (UPC/EAN)
EAN-8 as EAN-13 (UPC/EAN)
EAN-8 Status (UPC/EAN)
Editing a Macro
Effects of Protocol Commands
Electrical
Electrical Specifications
Embedded Memory
Enable Echo
Enable Reader
End of Read Cycle
Enhanced Format
Entering Control Characters in Serial Commands
Environmental
EPROM
Erasable Programmable Read-Only Memory
ESP System Requirements
Explanation of Modifiers for Code 39, Codabar, and I-2/5
Explanation of Modifiers for Other Symbologies
External Edge
External Level
EZ Mode

Falling Edge
Field-Programmable Gate Array
File
Find
Find Next
Find Previous
Firmware
Firmware Update
Firmware Verification
FIS Options
Fixed Length
Fixed Symbol Length
Fixed Symbol Length Status (DataBar Expanded)
Focal Distance
Focal Plane
Focus
Force Connect
Format (Industrial 2 of 5)
FPGA
Full ASCII Set (Code 39)
Full Duplex
Function Keys

General Specifications
Glossary of Terms
Good Read
GS1 DataBar (RSS)
H
Half Duplex
Hex Values
High Density
Highlighting
Host
Host Communications
Host Connector / Pin Assignments
Host Port Connections
Host Port Protocol

I
Image Sensor
Import/Export
Industrial 2 of 5
Initialize
Input
Install ESP
Installing ESP from the Microscan Tools CD
Interleaved 2 of 5
ISO Certification

K
Keyboard Macros

L
Ladder Orientation
Latest Manual Version
Lens
Light Emitting Diode
Limitation of Liability
Low Density

M
Macros
Maximum Speed
Mechanical
Menu Toolbar
Microscan ESP Help
Minimum Length
Minimum Speed
Minimum Symbol Length (Code 128/EAN 128)
Minimum Symbol Length (Code 39)
Minimum Symbol Length (Code 93)
Minimum Symbol Length (MSI Code)
Minimum Symbol Length (Plessey Code)
Model
Model Memo
Mounting the Imager
MS-2 CCD Reader
MS-2 CCD Reader Dimensions
MS-2 Read Cycle Overview
MSI Code
Multidrop

Navigating in ESP
New ESP File
New Model
Next Row
No Decode Timeout
No Read Message
No Read Status
Non-Printable Characters
Normally Closed
Normally Open
Number of Symbols

Object Plane
Open/Save
Operational Tips
Options
Output

Parity
Parity, Host Port
Paste
Pause
Picket Fence Orientation
Pitch
PLC
Index

Q
Plessey Code
Point-to-Point (Standard)
Point-to-Point with RTS/CTS
Port
Position the Reader
Postamble
Postamble Characters
Postamble Status
Preamble
Preamble Characters
Preamble Status
Preferences > Advanced Tab
Preferences > Bar Code Options Tab
Preferences > General Tab
Preferences > Terminal Tab
Programmable Logic Controller
Protocol
Protocol Command Mnemonics

Q
Quick Start

R
Random Access Memory
Range Modes (Industrial 2 of 5)
Range Modes (Interleaved 2 of 5)
Read Cycle
Read Cycle by ESP
Read Cycle Serial Commands
Read Ranges
Reader and Symbol Orientation
Reader Setup
Reader Status Request
Read-Only Memory
Receive After Connect
Receiving
Reload Last File
Request Part Number by ESP
Reset
RS-232 Hardware
RS-232 Hardware Required
Rules for Utility and Configuration Commands
Safety Certifications
Save
Save As
Save Configuration in ESP
Save Current Text
Save for Power-On
Saving
Saving Options
Scanning Performance
Select All
Select Model
Send
Send and Save
Send Current Command
Send Current View
Send XON with Autoconnect
Send, No Save
Send/Receive Options
Serial Command Format
Serial Configuration Command Conventions
Serial Configuration Commands
Serial Data
Serial Data and Edge
Serial Trigger Character (Delimited)
Serial Utility Commands
Setting Up Continuous Read 1 Output Emulation
Show Connect Prompt
Show Model Prompt
Show Non-Printable Characters
Shutter Speed
Skew
Skip EZ Mode
Standard Format
Start Trigger Character (Non-Delimited)
Start/Stop Output Status (Codabar)
Status (Industrial 2 of 5)
Status (MSI Code)
Status (Plessey Code)
Stop
Stop Bits, Host Port
Stop Trigger Character (Non-Delimited)
Substrate
Supplemental 2 Status (UPC/EAN)
Supplemental 5 Status (UPC/EAN)
Supplements Required (UPC/EAN)
Switch Model
Symbol Caption
Symbol Length # 1 (Industrial 2 of 5)
Symbol Length # 2 (Industrial 2 of 5)
Symbol Length #1 (Interleaved 2 of 5)
Symbol Length #2 (Interleaved 2 of 5)
Symbol Length (Codabar)
Symbol Length Status (Codabar)
Symbol Sizing Information
Symbol Transitions
Symbologies
Symbologies by ESP
Symbologies Serial Commands
Symbology
Symbology Identifier
System Requirements for ESP

Table of Contents
Technical Support
Terminal
Terminal Dropdown Menu
Terminal Window
Terminal Window Menus
Tilt
Time Between Identical Decodes
Trigger
Trigger Character
Trigger Mode

UPC/EAN
UPC-A as EAN-13 (UPC/EAN)
UPC-A Status (UPC/EAN)
UPC-E as UPC-A (UPC/EAN)
UPC-E Status (UPC/EAN)
USB Hardware
USB Hardware Required
Use Default Storage Location
Using ESP
Utilities
V

V

Variable Length
Very Large-Scale Integration
View
VLSI

W

Warranty
Please review the attached document and respond approve/reject using the above buttons. Thank you.

Cindy Brown
Document Control Administrator